
CREATING RPMS (Student version) v1.0

Featuring 36 pages of lecture
and a 48 page lab exercise

This docu m e n t serves two purpose s:
1. Representative sample to allow evaluation of our courseware manuals
2. Make available high quality RPM documentation to Linux administrators

About this material :
The blue background you see simulates the custom paper that all Guru Labs courseware is
printed on. This student version does not contain the instructor notes and teaching tips
present in the instructor version.

For more information on all the features of our unique layout, see:
http://ww w.gurulabs.co m /courseware/courseware_layout.php

For more freely available Guru Labs content (and the latest version of this file), see:
http://www.gurulabs.co m/goodies/

This sample validated on:
Red Hat Enterprise Linux 4 & Fedora Core v3
SUSE Linux Enterprise Server 9 & SUSE Linux Professional 9.2

About Guru Labs:
Guru Labs is a Linux training company started in 1999 by Linux experts to produce the best
Linux training and courseware available. For a complete list, visit our website at:
http://www.gurulabs.co m/

This work is copyrighted Guru Labs, L.C. 2005 and is licensed under the Creative Commons Attribution- NonCom mercial- NoDerivs License. To view a copy of this
license, visit http://creativecomm ons.org/licenses/by- nc- nd/2.0/ or send a letter to Creative Commons, 559 Nathan Abbott Way, Stanford, California 943 0 5 , USA.

Guru Labs 801 N 500 W Ste 202 Bountiful, UT 84010 Ph: 801-298-5227
WWW.GURULABS.COM

Section

12
C R E A T I N G R P M S

O b j e c t i v e s :

• Understand the historical UNIX/Linux software management landscape

• Describe the features and architecture of the RPM system

• Overview of the day-to-day use of RPM and use of different RPM
packages

• Rebuild and modify existing source RPMS

• Learn the syntax for RPM SPEC files and build infrastructure
requirements

• Create SPEC files, supporting files and new RPMs from scratch

• Use advanced RPM creation techniques

• Manage RPM implementation differecnes between Red Hat and SUSE
distributions

12-2

M a n a g i n g S o f t w a r e

Unix Packaging

• System V packages

Linux Packaging

• Slackware Tarballs
• RPMs
• Debian DPKGs

Managing Installed Software

Traditionally, software for Unix systems has primarily been
distributed as source code. To use this software, an administrator
must compile it properly for the system on which it will be used, then
install it. If it requires any supporting packages, they must also be
installed. If any local customizations are required, they must be
applied to the software.

When the software needs to be upgraded, an administrator must
find all the original files for that software on the system and replace
them with updated versions, taking care to preserve any
configuration changes which have been made locally.

Now, consider a typical Unix workstation application, such as
Mozilla. The basic Mozilla application consists of approximately 495
files scattered through approximately 10 different directories. When
removing it, an administrator must find all those files and delete
them. When upgrading it, an administrator must manually replace all
those files. To operate, Mozilla requires that approximately 50 other
system executables and libraries (many of which, in turn, require still
other libraries) be installed.

Managing all this complexity manually is certainly possible, and Unix
administrators have done so successfully for over 30 years now.
However, a variety of vendors have developed tools which simplify
the work necessary to cope. In the commercial Unix world, System V

Unix defines a standard “package” system which is the basis for
packaging software such as the pkg format used with Solaris, or the
depot format used with HP-UX. These package systems supply tools
which can be used to install, uninstall, and upgrade software
obtained in a package format which contains both the software and
metadata about the software (such as tracking of what other
software the software needs installed in order to function).

In the Linux world, software was initially unpackaged, just as it was in
the Unix world. When the Slackware distribution was first released in
1993, it introduced the use of a very rudimentary package format to
Linux. Shortly thereafter, two new distributions, Red Hat and Debian,
each began efforts to develop more full-featured packaging software
for Linux. Debian introduced the DPKG packaging system, while Red
Hat introduced the RPM packaging system. Since that time, the RPM
packaging system has become a de facto standard in the Linux
community. It is used by almost all prominent commercial Linux
distributions, including those created by Red Hat, SUSE, and
Mandrake. RPM is also the de jure standard for package
management in the Linux world; the LSB (Linux Standards Base)
effort which standardizes Linux requires that LSB-compliant systems
support installation of RPM files.

12-3

R P M F e a t u r e s

Noninteractive, Scriptable Installation

Tracking of Installed Files

Verification of Installed Files

Queries of Installed Files

Dependency Tracking

Tracking of All Source and Build Process

• Pristine Source preservation

Digitally Signed Software

Considering RPM Features

RPM, the RPM Package Manager, provides a variety of different
features which make it an excellent package manager for use by the
Linux community, and a great tool to simplify the work life of Linux
administrators.

RPM provides a set of tools which can be used to carry out
noninteractive, scriptable installations of software. Once that
software is installed, RPM provides tools which can track those
installed files, making it easily possible to uninstall them later, or to
upgrade them. It also provides several methods of verifying those
installed files, allowing administrators to double-check that the
installed software is installed correctly, and has not been
inadvertently modified since installation. In addition, RPM provides a
set of commands which can be used to search installed files to
determine which application uses them.

RPM has excellent dependency tracking capabilities, meaning that
when used to install new software, it can first ensure that any
software required for that new software to work is already installed;
when used to uninstall software, it can first verify that doing so will
not break any other applications.

In addition, RPM provides a tool set which manages the entire
process of patching, configuring, and compiling new applications.
When compiling an application, RPM makes it possible to start with
the pristine source code for that application, produce any needed
patches for that application, then script the process of applying
those patches, configuring the source code, and compiling the
source code to produce executables. This aspect of RPM greatly
simplifies the process of maintaining custom-configured
applications in the enterprise.

Furthermore, RPM allows all packaged software to be signed
digitally (using public-key technology). This feature allows the
authenticity of software packaged for use with RPM to be verified,
helping prevent the accidental installation of Trojan Horse software.

12-4

R P M A r c h i t e c t u r e

RPM package files

RPM database

• /var/lib/rpm

RPM utilities

• rpm

• rpmbuild

• rpmsign

• rpm2cpio

RPM configuration files

• macros used during preparation and installation of RPMs

Reviewing RPM Architecture

The RPM system consists of several components. Software which is
to be installed using RPM must be supplied in a special format, the
RPM package file. This RPM package file is an archive which contains
the actual files to be installed, as well as metadata about those files
which is used by the RPM system to ensure that those files are
installed with the correct permissions and ownerships and in the
correct locations.

As software is installed using RPM, the name and several other
properties of each file being installed on the system are recorded in
the RPM database, typically located in the /var/lib/rpm directory.
This database contains a list of all installed applications, and the files
which belong to those applications, allowing easy upgrade or
uninstallation of applications at a later time. It also tracks properties
of each file—such as its correct size, timestamp, and cryptographic
checksum—ensuring that the file’s correctness can be verified at a
later date. This database also contains dependency information for
every application, ensuring that administrators installing new
applications can be certain that the applications the new software
requires to operate are present, and that administrators removing
applications can be certain that doing so will not break any other
existing applications.

Several utilities are supplied for use with RPM. The basic utility used
for most RPM administrative tasks is the /bin/rpm command. On

dated systems, which use an older version of RPM, this command is
the only command commonly used when working with RPM. On
modern systems, which use newer versions of RPM, many of the
functions formerly performed by the /bin/rpm command have
been moved to helper utilities. For example, the
/usr/bin/rpmbuild command is used to produce new RPM
package files, while the /usr/bin/rpmsign command is used to
sign new packages.

The /usr/bin/rpm2cpio command has always been available for
conversion of RPM package files into a standard archive file format.

RPM also has several configuration files. In RHEL/FC, these are found
in the /etc/rpm and /usr/lib/rpm directories, while on SUSE
distributions, they are found in the /usr/lib/rpm directory only.
These configuration files primarily define macros—short-cut
commands which are used when running RPM commands, or when
preparing RPM package files.

12-5

R P M P a c k a g e F i l e s

Naming Conventions

• name-version-release.architecture.rpm

Architectures

• source -- .src.rpm
• noarch -- .noarch.rpm
• binary -- .i386.rpm

Format

• cpio archive plus a binary header

Considering RPM Files

Software prepared for use with RPM must be packaged in an RPM
package file. These package files should be named in the format:

name-version-release.architecture.rpm

In this package file name, the name indicates the software which is
packaged in that RPM. Usually, this name is the name of the
application.

In the RPM package file name, the version indicates the version of
the software which is packaged in that RPM. This version is usually
the version of the application which is being packaged in that RPM
package file. Although it is not required by the RPM package file
format or RPM utilities, this version field should always be a
number; use of words in this field can (and has) caused problems for
several front-end applications which use RPM.

The release in the RPM package file name is used to indicate
revisions of the packaging of that particular version of that
application. Sometimes, mistakes are made when preparing RPM
package files of a specific version of a specific application. When that
occurs, a new package file of that specific version of that specific
application can be prepared which fixes those mistakes. The
release field allows these revisions of package files to be tracked.
This field should be a number, and should be increased every time
the package is revised.

The architecture is the platform on which that RPM can be
executed, if binary. Typical values seen here include:

• y i386 – the package can be used on any 32-bit Intel-compatible CPU

• y i686 – the package can be used on any 686-class 32-bit Intel-compat-
ible CPU

• y ppc64 – the package can be used on the 64-bit PowerPC CPU

• y x86_64 – the package can be used on AMD or Intel 64-bit CPUs

• y ia64 – the package can be used on the 64-bit Itanium CPU

• y sparc64 – the package can be used on a 64-bit UltraSparc CPU

In addition to binary executables, RPM package files can also be
used to package platform-neutral executable code (such as
programs written in an interpreted language like Lisp or Perl or
Java). RPM package files which contain code which can run on any
CPU, or other files -such as documentation- which are
platform-neutral are packaged with in RPM package files for which
the architecture is noarch.

RPM package files can also be used to package application source
code, patches, and scripts specifying how that source code should
be configured and compiled. These package files will have an
architecture of src, indicating that they contain source code rather
than executables.

Regardless of their name, all RPM package files are a cpio archive
with a binary header attached.

12-6

W o r k i n g W i t h R P M s

Installing without upgrading RPMs

• rpm -i

Upgrading/Installing & Freshing RPMs

• rpm -U

• rpm -F

Removing RPMs

• rpm -e

Querying RPMs and Files

• rpmquery / rpm -q

Verifying RPMs and Files

• rpmverify / rpm -V

Working With RPMs

RPM package files are normally installed using the -U option to the
rpm command. Typically, this is used in conjunction with the -v
option, which causes rpm to be more verbose, and the -h option,
which causes rpm to display progress meters:

rpm -Uvh ytalk-3.1.1-12.i386.rpm

Preparing... ############################### [100%]

 1:ytalk ############################### [100%]

If you wish to install a package AND keep the older version installed
as well (this is only possible if there is no files that overlap), then use
the -i option. This only typically done with installing a kernel
package and you want to keep the older kernel installed in case the
new kernel malfunctions.

Packages can also be upgraded using the -F option to the rpm
command (which is typically also used with the -v and -h options).
This option causes the package to be upgraded if already installed
and of an older version, but not to be installed if it is not currently
installed.

When performing upgrades or freshening installed packages, the
rpm utility compares the version of the RPM being installed with the
version, in the RPM database on the system, of the already installed
RPM. If the version number of the package being installed is greater

than the installed version number, RPM will upgrade. If the version
number of the package being installed is less than the installed
version number, RPM will refuse to downgrade. If the versions
numbers of the two are the same, then RPM compares the release
numbers, and upgrades only if the release number of the new
package is greater than the release number of the installed package.

Once installed, applications can be removed using the -e option to
the rpm command:

rpm -e ytalk

When erasing installed software, only the name of the software
(ytalk) is used. When installing new packages or upgrading
existing packages, the complete package file name
(ytalk-3.1.1-12.i386.rpm) is used.

Package files and installed packages can also be queried. The
rpmquery command or the rpm command with the -q option can
perform many powerful queries. Similarly, installed files can be
verified using the rpmverify command or the rpm command with
the -V option.

12-7

S o u r c e R P M F i l e s

Contents

• Pristine source code
• Any needed patches and support files
• Script specifying how to build binary packages from the

source code
.spec file

Sometimes similar contents in tarball format instead

Understanding Source RPM Files

The rpm command can also be used to work with source RPM files
(SRPMs). SRPMs are package files which can be used to build binary
RPMs, such as the .i386.rpm and .noarch.rpm RPM package files
that are typically the end product and installed on systems. SRPMs
contain several different files:

• y Original source code for the application

• y Any patches required to modify that source code

• y Any needed auxiliary files for that application, such as System V init
scripts

• y A script specifying how to configure and compile the source code;
this script is typically named application.spec

One design principal behind RPM is that packages should always be
compiled from the original source code for that application. This
criterion is important in the Linux community, where individual
applications are developed by a large loosely organized collection of
organizations all over the Internet, and then collated into a cohesive
operating system by distribution vendors such as Red Hat or SUSE.
Distribution vendors often need to modify the original source code
to make it integrate better into their distribution. Similarly, end users
often need to recompile, and occasionally need to patch,
applications shipped by their distribution vendor to better suit their
local environment. Preparing RPMs from original source code, plus
separate patches, helps ensure long-term ease of maintenance. It

also allows end-users to determine easily exactly how a package has
been modified.

Typically, application developers who support creation of binary
RPMs from their source code do so by releasing SRPMs. Some
application developers, however, instead release their source code
in a standard Unix tarball format, and simply include within the
tarball a spec file specifying how to produce a binary RPM from that
source code.

12-8

U s i n g S o u r c e R P M s

Why?

• Typically, need software not included with distribution
• Sometimes need newer version of existing software, or

existing software compiled with different features
• Want maintenance benefits of packaging for this needed

software

Two approaches

• Rebuild existing src.rpm
Not modifying it in the process
Customizing the existing package

• Creating new src.rpm

Using Source RPMs

Although administrators can often obtain binary RPMs of the
software which they need to install, sometimes administrators will
instead need to compile software. There are several reasons why an
administrator might need to compile software from source,
including:

• y A need for software not included in the Linux distribution

• y A need for a newer version of an application included in the Linux dis-
tribution

• y A need for an application compiled with different options or features
than the build included in the Linux distribution

• y A need to fix a bug in an application included in the Linux distribution

When compiling software from source, an administrator might still
want the benefits of using a package management system like RPM,
such as the ability to uninstall the software easily at a later date, or
the ability to upgrade the software easily when necessary. Similarly,
an administrator might want the benefits gained by building
software using the RPM software, such as the inherent tracking of all
build commands and the coordination of patches with software.

For reasons such as these, an administrator might choose to compile
software from a SRPM to produce binary RPMs. To produce a binary
RPM, the administrator will first need to have a source RPM which
can be used to produce the binary RPM. The administrator will
typically obtain a SRPM by either of two methods:

• y Creating a new SRPM from scratch

• y Using an existing SRPM

When working from an existing SRPM, the administrator might use it
as-is, or might choose to customize it. All of these actions are
possible using RPM.

12-9

P r e p a r i n g t o B u i l d R P M s

Install Necessary Software Prerequisites

• gcc, make, and other development tools
• All needed dependencies
• Should be same environment as expected on target host

Do not build RPMs as root, to prevent changing current sys-
tem

Prepare Non-root Build Environment On Red Hat

• Create needed directory structure
• Create ~/.rpmmacros

Preparing to Build RPMs

When building binary RPMs from SRPMs, some preparatory steps
on the system which will be used to build the RPMs are first required.
The software needed to compile the binary RPM needs to be
installed on the build host. Typically, this requirement means that
common development tools such as the gcc C compiler and the
make command need to be installed. Depending upon how the Linux
distribution was installed, these tools may or may not be installed
already. In addition to development tools, most software has build
dependencies which must be present when the software is being
compiled. Many applications require support libraries and header
files which must be present when they are compiled, and these also
need to be installed if not already present.

The binary, once compiled, will be compiled to execute on a system
with the same system libraries and features as the system on which
it was compiled. For this reason, it is best to compile software on the
same operating system release as the system on which it will be
installed.

When compiling binary RPMs from SRPMs, it is important to do so
as a non-root user whenever possible.As part of the RPM build
process, the RPM software performs an install of the compiled
software into a virtual filesystem environment. Errors in the spec file
controlling the RPM build process can cause RPM to install to the
real filesystem instead. Building RPMs as a non-root user, though

not possible for all RPMs, prevents the build process from
accidentally writing to the real filesystem since non-root users do not
typically have write access to the directories in which the RPM build
process would attempt to install software.

On current releases of SUSE’s Linux distributions, RPM is
automatically configured to support RPM builds by non-root users
within the /usr/src/packages subdirectory. On Red Hat
distributions, the system will need to be configured to support
non-root RPM builds.

To enable RPM building on Red Hat distributions as a normal user:

1. Log in as the non-privileged user who will be performing
builds.

2. Create the directory structure needed by the RPM build
process:

$ mkdir -p ~/rpmbuild/{BUILD,RPMS,S{OURCE,PEC,RPM}S}

or

$ cp -a /usr/src/redhat ~/rpmbuild

3. Configure RPM to use this new directory structure, rather
than the default directory structure, when building RPMs:

$ echo "%_topdir $HOME/rpmbuild" > ~/.rpmmacros

Once these commands are completed, RPMs can be built under the
rpmbuild directory in the user’s home directory. To build RPMs
elsewhere, simply adjust the paths as appropriate.

12-10

R e b u i l d i n g E x i s t i n g P a c k a g e s

Source RPMs

• rpmbuild --rebuild

• rpmbuild --recompile

Tarballs containing .spec files

• rpmbuild -ta

Rebuilding Existing Packages

Once a proper build environment has been prepared, any existing
packages which need recompilation can be rebuilt. On modern
systems, the commands:

$ rpmbuild --rebuild name-ver-rel.src.rpm

can be used to compile the SRPM to produce a binary RPM, while

$ rpmbuild --recompile name-ver-rel.src.rpm

can be used to compile an unpackaged binary from the SRPM.

Or on older systems, the commands:

$ rpm --rebuild name-ver-rel.src.rpm

can be used to compile the SRPM to produce a binary RPM, while

$ rpm --recompile name-ver-rel.src.rpm

can be used to compile an unpackaged binary from the SRPM.

Some developers release source code as tarballs which contain a
spec file. RPM can also be used to compile this software. On modern
systems, the command:

$ rpmbuild -ta tarball

can be used to compile the tarball to produce a SRPM and a
binary RPM.

On older systems, the command

$ rpm -ta tarball

can be used to compile the tarball to produce a SRPM and a
binary RPM.

Installing source RPMs

By installing a source RPM, using the command:

$ rpm -Uvh name-ver-rel.src.rpm

The pristine source tarball, patches and supporting files will be
placed in your defined SOURCES directory. The spec file will be
placed in your SPECS directory. This only needed if you want to
change something before you make the binary RPM.

12-11

C r e a t i n g N e w R P M s

Prepare any needed patches

• Changes to released source code

Prepare any needed support files

• Startup scripts and similar files

Create the .spec file

• “recipe” for compilation of software

Build and Test the RPM

Creating New RPMs

Many times, an existing SRPM is available for the software which
needs to be compiled. If one is not available, however, one can be
created from scratch by following a few simple steps:

• y Preparing any needed patches

• y Preparing any needed support files

• y Creating the .spec file

• y Building and testing the RPM

Sometimes, released software needs a patch to alter the way the
code behaves. If the application being compiled needs any patches,
they will need to be prepared.

Similarly, applications often require support files which typically are
not distributed with the application. For example, system daemons
often require a System V initialization script to run them at system
start-up, but these init scripts are rarely supplied with the daemon. If
any such support files are required, they must be created.

Instructions which tell the RPM software how to compile the
software must also be prepared. These instructions are stored in a
spec file which the RPM software will use when compiling the RPM.

After these basic components have been created, the RPM can be
built and tested. Typically, doing so is an iterative process—during
the build process, mistakes in patch files or spec files will be caught
and corrected, then the build will be repeated. Eventually, a working
build will be obtained.

It is a good idea to submit any non local-specific patches you had to
create as well as the spec file back to the author of the software.

12-12

P a t c h i n g S o f t w a r e

SRPM Contains Pristine Source and Patches

• Eases long-term maintenance
• Allows authenticity verification

Why Patch?

• Change hard-coded default values
• Back port changes from development tree
• Make changes to better integrate package with the system
• Fix software bugs

Generating Patches

• Create .org file then modify existing file
• Use /usr/bin/diff to create patch file

Patching Software

When preparing software for a package, the software often needs
modifications to the source code. These modifications might be
needed for any of several different reasons, including:

• y A need to change hard-coded values, such as directory paths or
usage limits, within the software

• y A need to fix bugs in already released software

• y A need to make the software better integrate with other software on
the system

Any changes to the original source code of an application which are
made by a packager need to be made in the form of a patch file, and
not by directly modifying the original source of the application.
SRPMs always contain the original source code for an application, as
well as any patch files which are needed to make changes to that
source code. This policy eases long-term maintenance, since it
means any local changes are preserved in their own patch file and
easily tracked. It also simplifies verification of the authenticity of the
source code, an important consideration in today’s Trojan
Horse-flooded Internet.

Patch files are easily created. To create a patch file, first make a copy
of the file to be modified under its original with a .orig extension.
Then, make any modifications to the file which are needed. Next, use
the diff command with the -N, -a, -u, and -r options to generate

the differences between the original file and the modified file. Finally,
save these differences as a patch file.

For example, suppose an application, less, required a couple of
customizations to the files edit.c and filename.c in its source
code. To prepare patch files of these changes:

1. Obtain and unpack the original source code.

$ tar -zxvf less-378.tar.gz

2. Back up the files to be modified.

$ cd less-378/

$ cp edit.c edit.c.orig

$ cp filename.c filename.c.orig

3. Modify the source files

$ vi edit.c

$ vi filename.c

4. Save the differences in the edited files to patch files

$ diff -Naur edit.c.orig edit.c > edit.patch

$ diff -Naur filename.c.orig filename.c >

filename.patch

At this point, two patch files for the less source code exist which can
be used when preparing a SRPM to build the patched less program.

12-13

C r e a t i n g S u p p o r t F i l e s

Does package need a scheduled job?

• Create file for /etc/cron.*

Does package need log file rotation?

• Create file for /etc/logrotate.d/

Does package need shell or environment changes?

• Create files for /etc/profile.d/

Consider special cases:

• Startup scripts for daemons
• Desktop file(s) for menus
• Web configuration files
• Authenticating daemons -- /etc/pam.d/

Creating Support Files

In many cases, creation of support files needed for correct operation
of an application will often be necessary. Many applications need to
run scheduled tasks on a regular basis. For example, the
SquirrelMail application creates temporary files which it deletes by
running the tmpwatch utility periodically. On Red Hat and SUSE
distributions, the following directories exist for use by programs
which need to schedule tasks:

• y /etc/cron.d/

• y /etc/cron.hourly/

• y /etc/cron.daily/

• y /etc/cron.weekly/

• y /etc/cron.monthly/

Packages can put shell scripts in the mentioned directories and
those scripts will execute hourly, daily, weekly, or monthly.
Packages which need more flexible scheduling can put crontabs in
the /etc/cron.d/ directory. When packaging an application which
needs to run a command periodically, it will be necessary to create
the appropriate file to put in one of these directories.

Similarly, some applications require shell or environment changes.
Shell scripts making those changes can be placed in the
/etc/profile.d/ directory by the package. Programs which
generate a logfile need to ensure that their logfile gets rotated

periodically, and will need to place a configuration file in the
/etc/logrotate.d/ subdirectory.

Daemons which need to be executed on system start-up will need an
initialization script created for them. For most daemons, this will
entail creation of a System V init script, while for daemons which are
started by a super-server, an xinetd or inetd initialization script will
need to be created.

Some applications require further configuration changes. X-based
applications need to add entries to the menu systems used in the X
environment, and so need to provide a configuration file which adds
them to the menu structures. Web applications and Apache modules
often need to make configuration changes to the Apache web
server, and so need to provide a configuration file to modify the
behavior the of the Apache web server. Applications which perform
authentication need to supply configuration files for the PAM
subsystem.

12-14

C r e a t i n g S y s V i n i t s c r i p t s

Standalone daemons require SysV init script

• /etc/init.d/scriptname

RHEL/FC enhanced SysV scripts

• Use standard functions from /etc/init.d/functions
daemon

killproc

SLES/SL SysV script commands provided in sysvinit RPM

checkconfig enabled SysV scripts

• Requires special comments in script
• Can be managed by /sbin/chkconfig
• RPM post-install should register script with chkconfig

SysV init scripts

The use of SysV init scripts allow standalone daemons to be
managed using the standard method of running:

/etc/init.d/scriptname (start|stop|restart)

When creating an RPM for a daemon it is good practice to create and
install a SysV init script for the package so that system
administrators can manage the daemon just as they do other stock
daemons that came with the system.

When creating a SysV init script, it can be helpful to start with an
existing, simple one and modify appropriately. One such example
on RHEL/FC is the /etc/init.d/smartd SysV script. On SLES/SL
the /etc/init.d/skeleton SysV script is provided.

The official documentation for RHEL/FC SysV init scripts is found in
the /usr/share/doc/initscripts-*/sysvinitfiles file
while on SLES/SL consult /etc/init.d/README.

Enabling chkconfig control of SysV init scripts

The chkconfig command allows system administrators to easily
control what run level a daemon is started in, for example:

chkconfig --level 2345 httpd on

To allow this control the SysV init script must have two special
comment line near the top of the file, for example:

#!/bin/bash

#

Startup script for the Apache Web Server

#

chkconfig: 2345 85 15

description: Apache is a World Wide Web server.

#

The chkconfig: line states that this daemon should by default be
started in runlevels 2,3,4 and 5 and use have starting order 85 and
stop order 15. If your daemon should not be started by default in any
runlevel, use the minus sign in that position instead of the runlevel
numbers. In that case, after installing your RPM, the system
administrator would then run:

chkconfig scriptname on

Registering the SysV init script with chkconfig

In the RPM spec file, in the post install script stanza, you should
register your SysV init script to be controlled by chkconfig by having
the command:

/sbin/chkconfig --add scriptname

12-15

C r e a t i n g M e n u E n t r i e s

freedesktop.org

• Multiple formal and informal specifications for
interoperability

• Desktop Menu Specification
Standardized menu specification

applicationname.desktop files

• Stored in the /usr/share/applications/ directory

desktop-file-utils software

• desktop-file-install

• desktop-file-validate

Creating Menu Entries for User Applications

When packaging application software in RPM format as opposed to
system software, it is recommended that a menu entry is created for
the software so that users can easily find and launch the application.

Historically, the GNOME and KDE desktops used their own separate
menus and menu files with different format. This was recognized as
a problem and the two groups came together and created the
Desktop Entry Standard.

The Desktop Entry Standard defines that the directory
/usr/share/applications/ stores XML files for each menu
entry in the format applicationname.desktop.

Once a desktop file is created, it is installed using the
desktop-file-install command. The files can be validated to
ensure that the syntax is correct using the
desktop-file-validate command.

For small desktop files that don’t use translated descriptions, they
are often defined and created directly within the package spec file.

Full details on the structure and rules for the desktop files can be
found at the URL:

Example spec file desktop generation and installation

%install

[snip lines unrelated to desktop]

Desktop menu entry

cat > %{name}.desktop << EOF

[Desktop Entry]

Name=BZFlag

Comment=%{summary}

Exec=%{name}

Icon=bzflag-m.xpm

Terminal=0

Type=Application

EOF

mkdir -p %{buildroot}%{_datadir}/applications

desktop-file-install --vendor TimRiker \

 --dir %{buildroot}%{_datadir}/applications \

 --add-category X-Red-Hat-Extra \

 --add-category Application \

 --add-category Game \

 %{name}.desktop

http://standards.freedesktop.org/menu-spec/latest/

12-16

T h e . s p e c f i l e

Defines meta-info about the package

Describes how to compile package

Describes what files to install

• Defines permissions with which to install files

Contains scripts to execute before and after installation and
uninstallation

Examining .spec Files

After creating any required patch files and support files which are
needed for the application, a spec file must be created. This spec file
is written in a syntax which interleaves a macro programming
language with shell commands and with descriptive text. In the spec
file, the number sign (#) is used to denote comments, just as in most
other Unix configuration files.

The spec file consists of several closely related sections:

• y The Header stanza

• y The Prep stanza

• y The Build stanza

• y The Install stanza

• y The Files stanza

• y The Scripts stanza

• y The Changelog stanza

Together, these sections define the source files and patches which
make up the application, provide detailed information about the
source and use of the application, instruct RPM on how to compile
the application, define the files which RPM needs to install when
installing the application, as well as how to install those files. The
spec file can also contain optional scripts which are executed before
and after installation or uninstallation of the application.

12-17

SOURCES/

foo-1.03.tar.bz2

foo.sysvinit

foo-fix1.patch

foo-fix2.patch

RPMS/i386/

foo-1.03-1.i386.rpm

foo-devel-1.03-1.i386.rpm

SPECS/

foo.spec

BUILD/

foo-1.03/

main.h

main.c

/var/tmp/foo-root/

etc/init.d/foo

usr/sbin/foo

usr/lib/foo.a

usr/include/foo.h

usr/share/man/man8/foo.8

%prep %install

%build

%files

%files-devel

1

1

* uncompress files

 to build directory

* apply patches

2
* configure

* compile

3

* create virtual root filesystem

* copy compiled binaries

 and related files to their

 installation positions in

 the virtual root filesystem

4

* specify files from

 virtual root filesystem

 to be packaged into the

 various RPMs

Directories and files

involved in the

RPM package

building process

2

3 4

The foo.spec file

Summary: The world famous foo

Name: foo

Version: 1.03

Release: 1

License: GPL

Group: Applications/System

Source0: foo-%{version}.tar.bz2

Source1: foo.sysvinit

Patch0: foo-fix1.patch

Patch1: foo-fix2.patch

BuildRoot: /var/tmp/%{name}-root

%description

This foo daemon serves bar clients.

%prep

%setup -q

%build

%configure

make

%install

rm -rf %{buildroot}

%makeinstall

%clean

rm -rf %{buildroot}

%files

%defattr(-,root,root)

/etc/init.d/foo

%{_sbindir}/foo

/usr/share/man/man8/foo.8

%files devel

%defattr(-,root,root)

/usr/include/foo.h

/usr/lib/foo.a

%changelog

* Mon Apr 30 2003 Dax Kelson

- ver 1.03

12-18

U s i n g M a c r o s

Widely used in .spec files

• Simplify creation of .spec files

System-wide macros

• /usr/lib/rpm/macros

• Vendor-specific files
/usr/lib/rpm/suse_macros

/etc/rpm/macros*

User-defined macros

• ~/.rpmmacros

Using Macros

Macros are widely used throughout RPM to perform configuration.
These configuration macros can be set globally, in the
/usr/lib/rpm/macros configuration file. They can also be set on a
per-user basis; whenever an RPM command is executed, the RPM
software looks for the configuration file .rpmmacros in the user’s
home directory, and any configuration directives defined in this file
override global configuration options.

Macros are commonly used in spec files as well. Pre-defined macros
exist for several commonly used fields within the spec file, and
macros also exist for many commonly used directories and paths on
the system.

In configuration files and spec files, values are assigned to macro
names by listing the macro name followed by its value. The
statement

%_topdir /export/home/rpmmaker/rpmbuild

in ~/.rpmmacros, for example, assigns the value

/export/home/rpmmaker/rpmbuild

to the macro

%_topdir

Within configuration files and spec files, the value of a macro is
accessed by using the macro name encased in braces. For example,
any time the statement

%{_topdir}

appears within a spec file for this rpmmaker user, it will automatically
be replaced by the value

/export/home/rpmmaker/rpmbuild

Because macros are so useful when writing spec files, many
distribution vendors supply a variety of pre-defined macros which
can be used when writing spec files. On Red Hat distributions, these
vendor-specific macros are put in the /etc/rpm subdirectory, while
on SUSE distributions, these vendor-specific macros are put in the
/usr/lib/rpm/suse_macros file. In addition, many standard
macros are defined in the configuration files in the /usr/lib/rpm
subdirectory. When preparing packages for building on multiple
distributions, care should be taken to avoid using vendor-specific
macros.

12-19

C o m m o n l y U s e d M a c r o s

Directory Macros

%_prefix /usr

%_exec_prefix %{_prefix}

%_bindir %{_exec_prefix}/bin

%_sbindir %{_exec_prefix}/sbin

%_libexecdir %{_exec_prefix}/libexec

%_datadir %{_prefix}/share

%_sysconfdir %{_prefix}/etc

%_sharedstatedir %{_prefix}/com

%_localstatedir %{_prefix}/var

%_lib lib

%_libdir %{_exec_prefix}/%{_lib}

%_includedir %{_prefix}/include

%_oldincludedir /usr/include

%_infodir %{_prefix}/info

%_mandir %{_prefix}/man

The %configure macro

%configure \

CFLAGS="${CFLAGS:-%optflags}" ; export CFLAGS; \

CXXFLAGS="${CXXFLAGS:-%optflags}"; export CXXFLAGS; \

FFLAGS="${FFLAGS:-%optflags}" ; export FFLAGS ; \

./configure --host=%{_host} --build=%{_build} \\\

 --target=%{_target_platform} \\\

 --program-prefix=%{?_program_prefix} \\\

 --prefix=%{_prefix} \\\

 --exec-prefix=%{_exec_prefix} \\\

 --bindir=%{_bindir} \\\

 --sbindir=%{_sbindir} \\\

 --sysconfdir=%{_sysconfdir} \\\

 --datadir=%{_datadir} \\\

 --includedir=%{_includedir} \\\

 --libdir=%{_libdir} \\\

 --libexecdir=%{_libexecdir} \\\

 --localstatedir=%{_localstatedir} \\\

 --sharedstatedir=%{_sharedstatedir} \\\

 --mandir=%{_mandir} \\\

 --infodir=%{_infodir}

The %makeinstall macro

%makeinstall \

 make \\\

 prefix=%{buildroot}%{_prefix} \\\

 exec_prefix=%{buildroot}%{_exec_prefix} \\\

 bindir=%{buildroot}%{_bindir} \\\

 sbindir=%{buildroot}%{_sbindir} \\\

 sysconfdir=%{buildroot}%{_sysconfdir} \\\

 datadir=%{buildroot}%{_datadir} \\\

 includedir=%{buildroot}%{_includedir} \\\

 libdir=%{buildroot}%{_libdir} \\\

 libexecdir=%{buildroot}%{_libexecdir} \\\

 localstatedir=%{buildroot}%{_localstatedir} \\\

 sharedstatedir=%{buildroot}%{_sharedstatedir} \\\

 mandir=%{buildroot}%{_mandir} \\\

 infodir=%{buildroot}%{_infodir} \\\

 install

12-20

C o m m o n H e a d e r F i e l d s

Name - the application

Version - the application’s version

Release - the revision of that version’s packaging

License - the license used for the application

Group - the category to which that application belongs

Source - source files for the application

Patch - patch files to modify the source files

URL - the location of the original application source

Requires - any software required for the application to work

BuildRequires - any software required to compile the app

Creating the Header

The Header stanza is usually the first section to appear in the spec
file. It provides a lot of metadata about the application being
packaged. Fields commonly found in the header include:

• y Name - the application’s name

• y Version - the application’s version

• y Release - the revision of that version’s packaging

• y License - the license used for the application

• y Group - the category to which that application belongs

• y Source - source files for the application

• y Patch - patch files to modify the source files for the application

• y URL - the location of the original application source

• y Requires - any software required for the application to work

• y BuildRequires - any software required to compile the app

Valid values for the categories used in the Group header can be
found in the /usr/share/doc/rpm-*/GROUPS file on Red Hat
systems.

Often, more than one Source file or more than one Patch file is
needed for an RPM. In that case, the Source and Patch headers are
simply numbered:

Source:

Source1:

Patch0:

Patch1:

The Requires and BuildRequires headers are optional. RPM will
automatically calculate dependencies for software as it builds the
software; the Requires header just allows developers to list
run-time dependencies if they so desire. Similarly, the
BuildRequires field is used to specify any applications which have
to be present for the software to compile correctly. Although not
always used, it is courteous to define any non-obvious build
requirements to aid others trying to compile the software. Both
Requires and BuildRequires can list the name of the software
they require, or they can list the name and the version if specific
versions are required.

Two other fields are always seen in the Header. The Summary field is
used to provide a short, one-line blurb describing the application
being packaged, while the %description field provides a longer,
potentially multi-paragraph description of the application being
packaged.

If any custom macros are being created and defined for use within
the spec file, these macros will typically be defined within the
Header stanza of the spec file.

12-21

A d v a n c e d H e a d e r F i e l d s

Arch options

• BuildArch
• ExclusiveArch
• ExcludeArch

Epoch

Using Advanced Features

Other fields are also sometimes seen in the Header stanza for use in
specialized circumstances. A variety of Architecture options exist
which can be used to control the platforms on which the package
will be built. The BuildArch directive is used to force a package to
be built for a particular architecture, rather than the default
architecture of the machine on which it is being build. Commonly,
this is used to indicate that the built package should be a
.noarch.rpm:

BuildArch: noarch

Not all software will compile on all architectures, just as not all
applications are even usable on all architectures. Two directives
exist which can be used to enforce these requirements. The
ExclusiveArch statement can be used to list platforms on which
the package is supported, instructing the RPM software not to build it
on other platforms. The ExcludeArch statement can be used to list
platforms on which the package is not supported, instructing the
RPM software to build it on all other platforms. The statement

ExcludeArch: s390 s390x

specifies that the package should be built on all machines except
31-bit and 64-bit s/390 hardware, while the statement

ExclusiveArch: i386 s390 s390x x86_64

specifies that the package should be built only on 32-bit
Intel-compatible hardware, 31-bit and 64-bit s/390 hardware, and
64-bit AMD (Opteron) hardware, but not on any other systems.

RPM also provides another field in the Header stanza, the Epoch.
Normally, the RPM software uses the combination of package
version and package release to determine if one package is newer
than another. Some software uses non-standard versioning, or has
changed versioning. For example, the Postfix MTA historically used
YearMonthDate as its version (such as the postfix-19990906.tar.gz
release). More recently, Postfix’s author has adopted a more
traditional two-digit versioning system (such as the
postfix-2.0.9.tar.gz release). When RPM compares 19990906 with
2.0.9, 19990906 appears to be the newer software (since the version
is higher), even though it is actually 4 years older than the 2.0.9
Postfix release. To correct these sorts of problems, RPM supports an
Epoch field. Normally, this field is assumed to be zero if not present,
but can be set to a higher number if necessary. Whenever package
versions are compared, RPM first compares the Epoch, then the
Version, then the Release. Because of this, a Postfix package with an
Epoch of 1 and a Version of 2.0.9 will correctly appear newer than a
Postfix package with an Epoch of 0 and a Version of 19990906.

12-22

T h e P r e p S e c t i o n

Used to prepare the software

• Untar the source code
• Apply any needed patches
• Perform any other required setup steps

Preparing the Software

After the Header stanza, the next stanza in the spec file is usually the
Prep stanza. This section is always begun by the token

%prep

and is used to prepare the software to be compiled. Typically, this
section unpacks the archived source code files, and applies any
needed patches to these files. This can be done using standard shell
commands, but is more typically done using predefined macros.

One macro commonly seen here is

%setup

This macro unpacks the source code and then changes directory to
the directory where the source code was unpacked. Options are
available to %setup as well. For example, after untarring the
package, the %setup macro assumes the directory that is created is
named:

%{name}-%{version}

If the directory inside the tarball is named differently, you can use the
-n option to specify the directory name to cd into. For example:

%setup -n %{name}-April2003Rel

Another commonly used option to %setup is the -q option which
turns off the verbose output from the tar command.

Another macro typically used here is

%patch

This macro applies the patches defined in the Header stanza. If
multiple patches are being used, it accepts a numeric argument to
indicate which patch file should be applied. It also accepts a -b
extension argument to instruct the RPM software to back up files
with the specified extension before patching them.

The following macro

%patch2 -b .test

instructs the RPM software to apply Patch2, and to save a backup of
any files being patched with a .test extension before patching
them.

The -p option to the %patch macro controls the -p option passed
to the /usr/bin/patch command. Typically, -p1 is used,
however, it depends on how the patch file was created in the first
place.

12-23

T h e B u i l d S e c t i o n

Used to compile the software

• Configure the software
• Compile the software

Defining the Build Process

After the Prep stanza, the spec file usually contains a Build stanza.
The Build stanza always begins with the token:

%build

In this stanza, commands to configure the software and to compile
the configured software are listed. As with the Prep section, these
commands can be shell commands, or they can be macros.

If the software being compiled is designed for use with autoconf, the

%configure

macro should be used to configure the software. This macro
automatically specifies the correct options to autoconf to install
software correctly, and to compile it optimized for best performance.

If the software is not designed for configuration using autoconf, use
shell commands to configure the software appropriately.

Once the software is configured, it must be compiled. Since
compilation methods vary so widely from application to application,
no macro exists for compilation. Simply list the shell commands
which would be used to compile the software.

A shell variable,

$RPM_OPT_FLAGS

is commonly used when compiling software. This shell variable
contains the correct optimization flags for the gcc suite of compilers.
Using syntax such as

make CC=”gcc $RPM_OPT_FLAGS”

or

make CFLAGS=”$RPM_OPT_FLAGS”

will ensure that the appropriate optimization flags are always used.
Other compiler flags and options can, of course, be specified as
necessary.

The default value of $RPM_OPT_FLAGS is:

-O2 -g -march=i386 -mcpu=i686

12-24

T h e I n s t a l l S e c t i o n

Used to install the software

• Install the software into a virtual directory structure
• Clean up the temporary build directory

Relies on Buildroot set in Header stanza

Installing the Software

After the Build stanza, the next section of the spec file is the
Install stanza. This stanza always begins with the token:

%install

This stanza is used to install the compiled software into a virtual
directory structure so that it can be packaged up into an RPM.

In the Header stanza, the Buildroot can be specified. This
Buildroot defines the location of a virtual directory tree into which
the software can be installed. Usually, this will be declared as:

Buildroot: %{_tmppath}/%{name}-root

or

Buildroot: %{_tmppath}/%{name}-%{version}-root

using RPM’s built-in macros to specify a private directory under the
/var/tmp directory.

The shell variable

$RPM_BUILD_ROOT

can be used to access the value of Buildroot throughout the rest of
the spec file.

mkdir -p $RPM_BUILD_ROOT/usr/share/icons/

cp %{SOURCE3} $RPM_BUILD_ROOT/usr/share/icons/

The Install stanza typically lists shell commands to install the
compiled software within this Buildroot.

The macro %makeinstall can be used to install software which
supports autoconf; this macro automatically installs software into
the correct subdirectories under the $RPM_BUILD_ROOT.

Sometimes, a package needs to be built more than once, due to
packaging errors or similar problems. Each time the package is build,
the Install stanza will copy files into the Buildroot. To prevent
incorrect packaging due to old files within the Buildroot, the
Buildroot should always have any existing files deleted before
installing new files into it. For this purpose, a clean script can be
created within the Install stanza. This script is always denoted by
the token

%clean

and usually just consists of the command

rm -rf $RPM_BUILD_ROOT

If present, this %clean section is run after preparing packages from
the software installed in the Install stanza, ensuring that the
Buildroot is correctly empty for the next time the package is built.

12-25

T h e F i l e s S e c t i o n

Used to define the files which should be packaged

• Only packages files installed into the Buildroot
• Should specify ownerships and permissions for the files

being packaged

Controlling Installed Files

After the Install stanza, the next section of the spec file is the
Files stanza, which lists the files and directories which should be
packaged into an RPM. This stanza always begins with the token:

%files

Within this section, simply list, on a one-file-per-line-basis, the files
and directories, relative to the Buildroot, which the RPM software
should archive into packages. Wildcards can be used within this
section, such as the statement

/usr/bin/*

which instructs the RPM software to package all files within the
directory $RPM_BUILD_ROOT/usr/bin.

When listing files and directories, care must be taken to list all files
which are needed, and not to list any files which should not be
packaged. Great caution should be used when listing a directory.
Listing a directory instructs the RPM software to package that
directory and all files within it, so the statement

/usr/bin

instructs the RPM software to package all files within the directory
$RPM_BUILD_ROOT/usr/bin, but also incorrectly produces a
package which appears to own the /usr/bin directory!

Within the Files stanza, several macros can be used. The
%defattr macro should always be used to specify default
ownerships and permissions which apply to files listed after it. For
example, the statement %defattr(0770,root,root)would
specify that all files and directories listed after it and prior to any
subsequent %defattr macros would be installed owned by the root
user and group, and with permissions 0770. Further, individual files
can have different permissions and ownership than the %defattr
macro specifies by using the %attr macro. For example:

%files

%defattr(-,root,root)

%{_libdir}/libamanda*.so

%attr(660,amanda,disk) /var/lib/amanda/.amandahosts

Several macros exist to indicate that installed files have special
properties. The macro

%dir

can be used to specify that a directory should be packaged, rather
than the files within that directory. The macro

%config(noreplace)

can be used to indicate that the installed file is a configuration file,
and shouldn’t be overwritten on a package upgrade.

12-26

O p t i o n a l S c r i p t S e c t i o n (s)

preinstall / postinstall / preuninstall / postuninstall scripts

• Allow execution of commands before and after installation
and deletion

• triggers can make script execution conditional

Commonly used to create necessary user accounts

Executing Commands During Installation or Deletion

Sometimes, commands need to be executed on the system before
or after software gets installed. For example, after new shared
libraries are installed, the ldconfig command needs to be run so that
the system will use the newly installed libraries.

The RPM spec file can contain scripts which get executed before or
after package installation or uninstallation. These scripts are usually
listed after the Files stanza, and are simply Bourne shell scripts
which are listed after a macro indicating when they should execute.
Available scripts are:

• y %pre – executed before the package is installed

• y %post – executed after the package is installed

• y %preun – executed before the package is uninstalled

• y %postun – executed after the package is uninstalled

Most commonly, these scripts are used for packages which require a
user account on the system to operate. The %pre script can be used
to add the required account when installing the software, and the
%postun script can be used to remove the no-longer-required
account when uninstalling the software. When preparing a package
for use on Red Hat systems which requires a user account, consult
the file /usr/share/doc/setup-*/uidgid, which lists the UIDs
and GIDs which are already used by software shipped with Red Hat
Linux.

Sometimes, the actions which should be carried out in the %pre,
%post, %preun, and %postun scripts are contingent upon the
software which is installed on the system. For example, the Mailman
mailing-list management software needs several email aliases to
operated, so a package of it needs to add email aliases to the system
in its %post script, and remove them from the system in its %postun
script. Where those aliases get written is contingent upon the MTA
installed on the system—Postfix uses the file
/etc/postfix/aliases as its aliases database, while Sendmail
uses the file /etc/aliases as its aliases database.

To deal with situations where the action to take is contingent upon
the current system state, conditional shell scripting can be used.
Alternately, RPM provides a trigger mechanism which can be used
to list actions to carry out when other software is installed or
uninstalled. These scripts are denoted by the tokens

%triggerin -- package

or

%triggerun -- package

The first token indicates a script to run when the software package
is installed or upgraded, while the second token indicates a script to
run when the software package is removed.

12-27

T h e C h a n g e l o g S e c t i o n

Used to record packaging changes

• List changes, and why made
• Provides a record of how the software is packaged

Tracking Packaging Changes

The final stanza of the RPM spec file is the Changelog stanza. This
stanza always begins with the following token and is used to list any
changes made to the package:

%changelog

Although the structure of this log is technically free-form, the
following format is typically used by most RPM packages:

* date packager <packager’s email> version-release

- change made

- other change made

The date must be in the following format:

Wed Nov 20 2002

The current day in the required format can be obtained with the
command:

date +"%a %b %d %Y"

Every time a new revision of the package is prepared, the packager
simply adds a stanza similar to the above example to the beginning
of the Changelog stanza.

Example Changelog Section from FC3 firefox RPM

The following example changelog comes from the Fedora Core v3
firefox RPM:

* Wed Mar 02 2005 Christopher Aillon

<caillon@redhat.com> 0:1.0.1-1.3.2

- Remerge firefox-1.0-pango-selection.patch

* Thu Feb 24 2005 Christopher Aillon

<caillon@redhat.com> 0:1.0.1-1.3.1

- Update to 1.0.1 fixing several security flaws.

- Mark some generated files as ghost (#136015)

- Add RPM version to the useragent

- BuildRequires pango-devel

- Enable pango rendering by default.

- Enable smooth scrolling by default

One convention that Red Hat uses it to include references to their
bug tracking system bug Ids. In the example, there is reference to a
bug about a RPM packing problem. The full details can be viewed
here:

https://bugzilla.redhat.com/bugzilla/show_bug.cgi?id=136015

12-28

P u t t i n g I t A l l T o g e t h e r

Example spec file

• Package for the less application
• All comments added, though production spec files often

contain comments as well

The less Spec

Header Stanza begins here

#

Short description

Summary: A text file browser similar to more, but better.

the application name

Name: less

the version of the application

Version: 378

the packaging revision of this particular version

Release: 8

this software is licensed under the GPL

License: GPL

this software is an application used with text files

Group: Applications/Text

this software source file; not the use of variables

Source: http://www.greenwoodsoftware.com/less/%{name}-%{version}.tar.gz

a shell script needed for use with less

Source1: lesspipe.sh

script to change the environment when less is used in Bourne-compatible shells

Source2: less.sh

script to change the environment when less is used in C shells

Source3: less.csh

12-29

Patches

Patch0: less-378-rh1.patch

Patch1: less-378+iso247-20030108.diff

Patch2: less-378-multibyte.patch

this software can be downloaded from the following location

URL: http://www.greenwoodsoftware.com/less/

temporary dir where the software should be compiled

Buildroot: %{_tmppath}/%{name}-root

non-obvious software required to build the software

BuildRequires: ncurses-devel

long description

%description

The less utility is a text file browser that resembles more, but has

more capabilities. Less allows you to move backwards in the file as

well as forwards. Since less doesn't have to read the entire input file

before it starts, less starts up more quickly than text editors (for

example, vi).

You should install less because it is a basic utility for viewing text

files, and you'll use it frequently.

Prep Stanza begins here

#

%prep

unpack the source and cd into the source directory

%setup -q

apply the first patch

%patch0 -p1 -b .rh1

apply the second patch

%patch1 -p1 -b .jp

apply the third patch

%patch2 -p1 -b .multibyte

perform other needed setup

chmod -R a+w *

12-30

Build Stanza begins here

#

%build

less uses autoconf, so ./configure it w/ appropriate options

%configure

compile the software

make CC="gcc $RPM_OPT_FLAGS -D_GNU_SOURCE -D_LARGEFILE_SOURCE -D_LARGEFILE64_SOU

RCE -D_FILE_OFFSET_BITS=64" datadir=%{_docdir}

Install Stanza begins here

#

%install

as sanity protection, make sure the Buildroot is empty

rm -rf $RPM_BUILD_ROOT

install software into the Buildroot

%makeinstall

strip -R .comment $RPM_BUILD_ROOT/usr/bin/less

mkdir -p $RPM_BUILD_ROOT/etc/profile.d

install -c -m 755 %{SOURCE1} $RPM_BUILD_ROOT/usr/bin/

install -c -m 755 %{SOURCE2} $RPM_BUILD_ROOT/etc/profile.d

install -c -m 755 %{SOURCE3} $RPM_BUILD_ROOT/etc/profile.d

define a clean-up script to run after the software in Buildroot is pkg'ed

%clean

the actual script -- just delete all files within the Buildroot

rm -rf $RPM_BUILD_ROOT

Files Stanza begins here

#

%files

set perms and ownerships of packaged files

the - indicates that the current permissions on the files should be used

%defattr(-,root,root)

package all files within the $RPM_BUILD_ROOT/etc/profile.d directory

/etc/profile.d/*

package all files within the $RPM_BUILD_ROOT/usr/bin directory

/usr/bin/*

package all files within the $RPM_BUILD_ROOT/usr/share/man/man1 directory

%{_mandir}/man1/*

12-31

Scripts Stanza begin here

#

No Scripts in this RPM

Changelog begins here

#

%changelog

newest Changelog entry

* Tue Feb 4 2003 Tim Waugh <twaugh@redhat.com> 378-7

- Part of multibyte patch was missing; fixed.

2nd-newest Changelog entry

* Mon Feb 3 2003 Tim Waugh <twaugh@redhat.com> 378-6

- Fix underlining multibyte characters (bug #83377).

oldest Changelog entry

* Thu Jan 30 2003 Karsten Hopp <karsten@redhat.de> 378-5

- removed older, unused patches

- add patch from Yukihiro Nakai to fix display of japanese text

 (#79977)

12-32

A d v a n c e d P a c k a g i n g

Creating sub-packages

Building RPMs of binary-only software

Building interactive RPMs

Supporting multiple distributions

Supporting multiple languages

Considering Advanced Needs

In addition to the basic spec file features mentioned so far, more
advanced needs sometimes arise. Commonly, a single application
needs to be packaged into two or more package files. For example,
the LessTif software provides several different things: a runtime
library used by applications linked against the Motif widget set,
programming headers and libraries which developers can use to
produce applications, and a window manager. These are three
distinctly separate applications, and different users will need
different combinations of these applications. For this reason, RPM
spec files can be written to generate sub-packages, two or more
binary packages built from the same source code.

Another common need is to package binary files for which the
source code is not available. For example, Adobe releases the
Acrobat Reader for Linux, but until version 7 they only released it as
an tarball of the binary executables only. RPMs can be prepared of
this binary application, allowing users to manage the application
using the RPM suite of tools. To prepare a spec file for a binary
application, simply omit the Build stanza. In the %install stanza
manually copy the files to the virtual root filesystem.

Packagers often want to prepare RPMs which are interactive,
meaning that they ask questions of the user during install. RPM
deliberately does NOT support creation of interactive packages to

ensure that all package installation can be scripted. Be sure to design
packages so that no interactivity is required to install the RPM.

Packagers often need to prepare packages for more than one
distribution. Several potential complications should be considered
to ensure that a single spec file can be used to compile RPMs
suitable for multiple distributions:

• y Different distributions predefine different macros. Most macros
defined on Red Hat distributions are a “base line” which can be
assumed to be defined on most major distributions, including SUSE
distributions, so using just the macros defined on Red Hat systems
aids cross-distribution compatibility

• y Different distributions use different versions of RPM. Older Linux dis-
tributions use an old RPM release, RPM 3, while modern systems use
a newer release, RPM 4. There are both behavioral and syntax differ-
ence between different RPM releases which must be counteracted.

• y Different distributions sometimes install files in different locations.
The Linux Standards Base (LSB) effort has largely eliminated this fac-
tor, but it can occasionally still occur.

Packagers often want to release packages which support multiple
languages, so that users can see the package description and similar
information in their native language. RPM provides a specspo
mechanism which can be used to store translated messages for
package files.

12-33

B u i l d i n g P a c k a g e s

Modern RPM (version 4.x and higher)

• rpmbuild -b

Legacy RPM (version 3.x and lower)

• rpm -b

Common options

• -a

Targeting a Platform

Overriding Macros

Building Packages

Once a spec file has been prepared, the next step is to build
software using this spec file. The basic command to build software
on modern systems is rpmbuild -b spec, while with older
systems the command is rpm -b spec. These commands accept
any of several different arguments, depending on what part of the
spec file should be processed:

• y -bp – Carry out the Prep stanza of the spec file

• y -bc – Carry out the Prep and Build stanzas of the spec file

• y -bi – Carry out the Prep, Build, and Install stanzas of the spec file

• y -bl – Verify the Files stanza of the spec file

• y -bb – Build a binary RPM based on the spec file

• y -bs – Build a source RPM based on the spec file

• y -ba – Build both source and binary RPMs based on the spec file

The most common command to build an RPM from a spec file is:

rpmbuild -ba spec

Sometimes, the --target option is used to force the RPM software
to compile software for a specific platform. For example, on 32-bit
Intel-compatible systems running RHEL/FC, RPM software will, by
default, produce RPMs which run on any 32-bit Intel-compatible
computer but which are optimized for use on 80686-class machines.
This option can be used to force RPM to produce executables which

only run on 80686-class machines, or which are better optimized for
the AMD Athlon, or which are optimized for 80386-class machines.
The command:

rpmbuild -ba --target i686-redhat-linux spec

builds RPMs based on the spec which are only compatible with
80686-class machines, and which are marginally more optimized
than the default optimizations RPM performs would offer.

When building packages, RPM software provides the capability to
override or modify RPM macros from the command-line. This
feature is commonly used by packagers to produce spec files which
can be used to compile the same software with different options. For
example, the Postfix spec file in RHEL/FC contains a series of macro
definitions in the Header stanza which enable or disable support, at
compilation time, for various features. The statement:

%define LDAP 0

is used to define the value of the LDAP variable to 0, and later
commands in the Build stanza use this to compile Postfix without
LDAP support. Overriding this variable by the command-line

rpmbuild -ba --define ‘LDAP 1’ postfix.spec

changes the value of the variable, and Postfix is compiled with LDAP
support.

12-34

D i g i t a l l y S i g n i n g P a c k a g e s

Why?

• Provides authentication
• Confirms integrity

How?

• Create GPG key
• Modify macros
• Sign package

rpmsign --addsign

Verifying Signatures

• rpmsign -k

Signing Built Packages

After producing binary and source RPMs from a spec file, the
resulting RPMs can be digitally signed using GPG (or PGP). Signed
packages offer two important advantages to end users who
download them:

• y They authenticate the package, assuring the user that the package
comes from the vendor it is supposed to come from

• y They guarantee the package’s integrity, assuring the user that the
package has not been modified since the packager signed it (though
RPMs also provide this guarantee using other mechanisms)

Both of these features are important on today’s Trojan Horse-riddled
Internet.

To sign a package, you must first have a GPG key. If you do not
already have one, you can generate one easily:

$ gpg --gen-key

Once you have created a key, modify your RPM macros to instruct
RPM to use GPG to sign packages:

echo "%_signature gpg" >> ~/.rpmmacros

Also, specify which key RPM should use when signing packages:

echo "%_gpg_name email_address" >> ~/.rpmmacros

Also tell RPM where to locate your GPG keys:

echo "%_gpg_path $HOME/.gnupg" >> ~/.rpmmacros

Once the RPM software is configured to use GPG, the rpmsign
command can be used to sign packages you have built:

$ rpmsign --addsign /path/to/the.rpm

You can export your public key:

$ gpg --export --armor > gpg-pub-key

You can then give this public key to users installing your RPMs, and
they can use it to verify that your RPMs are signed by you. To do this,
they must first import your GPG public key into their RPM GPG
keychain as root:

rpmsign --import /path/to/gpg-pub-key

Once the public key is imported, the signature of packages can be
verified:

$ rpmsign -K package-1.0-1.i386.rpm

package-1.0-1.i386.rpm: (sha1) dsa sha1 md5 gpg OK

If the package verifies, then the user knows the signature of it is that
of a vendor they trust.

12-35

R e v i s i n g a P a c k a g e

Install current SRPM

Drop new source tarball in SOURCES

Update spec file to use new source

Try Prep

• If any patch has error applying, visually inspect to see whats
up.

Already applied in new package, or reason for patch
addressed via another method == drop patch
If patch needed but won’t apply == redo new patch

Revising Packages

In addition to producing new RPMs from scratch, another common
task for packagers is to update existing packages, rebuilding the
package as newer versions of the application it contains become
available. Revising an existing source RPM requires a few simple
steps:

1. Install the latest available SRPM for that application
2. Add the latest version of the source code for that application

in the SOURCES directory
3. Modify the spec file for that application to use the new

source code.
4. Try to complete the Prep section of the spec file:

$ rpmbuild -bp application.spec

When trying to complete the Prep stanza for the software, some
patches may not apply to the new application source code. If a patch
does not apply, inspect the patch and the application source code to
see why it does not apply.

1. The patch may not apply correctly because it is no longer
needed. In this case, simply remove the patch from the spec
file.

2. The patch may still be needed, but might no longer apply do
to other code changes in the application. In this case, create
a new version of the patch which applies to the new source
code.

Once the Prep stanza can be completed successfully, update the
Changelog and package versioning information in the spec file,
then build new packages:

$ rpmbuild -ba application.spec

12-36

O t h e r R e s o u r c e s

RPM references

Add-on Tools

Sources of RPMs

Further Resources

A variety of additional resources are available which provide more
information about RPM and preparing packages for RPM. The best
resource is http://www.rpm.org which provides a wide variety of
documentation about RPM, as well as the source code for RPM. This
site even has a freely downloadable book, Maximum RPM. Although
now somewhat dated, this book is still a good supplemental
resource.

Many tools are available which can simplify the creation of RPMs.
These include tools like spec file editing modes for popular text
editors:

http://www.tihlde.hist.no/~stigb/rpm-spec-mode.el

http://pegasus.rutgers.edu/~elflord/vim/syntax/spec.vim

There are also a variety of spec file generation tools available:

http://rpmrebuild.sourceforge.net/

http://www.cpan.org/modules/by-module/RPM/RPM-Specfile-1.17.t
ar.gz

http://checkinstall.izto.org/

One difficulty with preparing packages for multiple releases is the
need to have a separate build environment for every release. There
are several applications which can be used to simplify the work of

creating multiple build environments on the same machine,
including:

http://thomas.apestaart.org/projects/mach/

http://www.solucorp.qc.ca/miscprj/s_context.hc

Several sites exist which provide a variety of high-quality
pre-created RPMs, or which can help locate existing RPMs:

http://freshrpms.net

http://www.fedoraproject.org

http://www.rpmfind.net

http://www.GuruLabs.com/downloads.html

Lots of tools are available which ease the work in installing RPMs,
including:

http://current.tigris.org

http://www.linux.duke.edu/projects/yum/

http://www.autorpm.org/

http://www.mat.univie.ac.at/~gerald/ftp/autoupdate/

http://apt4rpm.sourceforge.net/

12-37

L a b 1 2 . 1 - C r e a t i n g R P M s

Estimated Time: 1.5 Hours

Objectives:

• Set up non-root RPM build environment
• Rebuild a binary package from a src.rpm
• Update an existing source RPM with the latest software

version
• Create a spec file from scratch for an unpackaged software

application
• Revise packages to correct packaging errors
• Create multiple RPMs from a single source RPM
• Create a GPG key pair
• Sign and verify your RPMs

12-38

12-39

Lab

12
R P M C R E A T I O NTask 1

• Set up non-root RPM build environment
• Rebuild a binary package from a src.rpm

This lab will primarily be done while logged in as a non-root user. Occasionally
you will need root privileges. The lab will direct you to use the su command to
become root when required. Start by logging in —or obtaining a shell as a non-
root user.

This lab has been validated on the following distributions:

Red Hat Enterprise Linux v4 aka RHEL4

Fedora Core v3 aka FC3

SUSE Linux Enterprise Server v9 aka SLES9

SUSE Linux Professional v9.2 aka SL92

On RHEL/FC an “Everything” install is assumed to have been performed and on
SLES/SL an install with all “package groups” selected is assumed to have been
installed.

Additionally this lab requires several packages to downloaded to the /labfiles/
directory before starting. Download the need files by running the following
commands:

mkdir /labfiles/

wget http://www.gurulabs.com/GURULABS-RPM-LAB/ltris-1.0.4-2.src.rpm

wget http://www.gurulabs.com/GURULABS-RPM-LAB/lbreakout2-2.4.1.tar.gz

wget http://www.gurulabs.com/GURULABS-RPM-LAB/lbreakout2.spec-example

wget http://www.gurulabs.com/GURULABS-RPM-LAB/lbreakout2.spec-example2

wget http://www.gurulabs.com/GURULABS-RPM-LAB/nmap-3.70-1.src.rpm

wget http://www.gurulabs.com/GURULABS-RPM-LAB/nmap-3.81.tar.bz2

wget http://www.gurulabs.com/GURULABS-RPM-LAB/template.spec

1. The creation of RPMs requires the use of several developer tools. These
include both the standard development tools such as the GNU Compiler
Collection, GNU make, and related packages, as well as specific RPM building

12-40

tools. Verify that you have the following standard development tool packages
installed:

$ rpm -q gcc

• The exact version returned on this package and others will vary
depending on what version of RHEL/FC or SLES/SL Linux you are
using. What matters is that the packages are installed, not the
exact versions which are installed.

gcc-3.2.2-5

$ rpm -q gcc-c++

rpm-c++-3.2.2-5

$ rpm -q make

make-3.79.1-17

$ rpm -q bison

bison-1.35-6

$ rpm -q binutils

binutils-2.13.90.0.18-9

Note that a full development environment will have many more related
packages installed as well. However, if the above packages are installed, it is a
strong indication that the other needed packages are also installed.

Now, verify that you have the proper RPM building utilities installed. On
RHEL/FC the utilites are part of the rpm-build RPM package which can be
optionally installed. On SLES/SL the utilties are part of the rpm package which
is always installed. Run the following command only on RHEL/FC:

[RHEL/FC]$ rpm -q rpm-build

rpm-build-4.3.2-21

Also determine which RPM version you have installed:

$ rpm -q rpm

rpm-4.3.2-21

Different RPM versions support different features and are used differently, so it
is important to determine which version of RPM is being used.

2. Remove any installed packages that will conflict with packages built manually in
upcoming steps:

[SLES/SL]# rpm -e ltris nmap lbreakout

[RHEL/FC]# rpm -e nmap nmap-frontend

3. Out of the box on RHEL/FC, the system RPM build directory structure,
/usr/src/redhat/, is only writable by the root user. On SLES/SL the RPM

12-41

build directory structure is located at /usr/src/packages/ and is writable
by everyone.

The recommended practice is NOT to build RPMs as the root user, create a
RPM build directory tree in your non-root user’s home directory for isolation
from other users.

Make sure your present working directory is your home directory, and then
create the RPM build directory structure:

$ cd

$ mkdir -p rpmbuild/{SOURCES,SPECS,BUILD,SRPMS,RPMS}

$ mkdir rpmbuild/RPMS/{i386,i586,i686}

4. When building RPMs using the rpmbuild command, the RPM software must
locate the RPM build directory structure. To do this, it reads the value of the
%_topdir RPM macro. The macro container files that macros are read from
start with the RPM default /usr/lib/rpm/macros file, then the local system
override file /etc/rpm/macros is consulted (if it exists), and finally, the per-
user macro file is read, ~/.rpmmacros (if it exists). Any macro found in the
per-user macro file will override the same macro in the local system override
file, and any macro found in the local system override file will override macros
from the RPM default file.

• Red Hat Linux 9 and later RHEL/FC releases generate debuginfo
packages by default. These debuginfo RPMs can be installed
when installing an application to get more capability to debug
the application. They are not typically necessary, and are often
not desired, as they are quite large.

Create a ~/.rpmmacros file and set the %_topdir RPM macro to point to
the directory structure you created in the previous step. Also, set the
%debug_package macro to turn off the automatic creation of the debuginfo
RPM.

Use your favorite text editor and create the file ~/.rpmmacros with the
following contents:

%_topdir %(echo $HOME)/rpmbuild

• This %debug_package macro is only needed on systems with
RPM 4.2 or newer.

%debug_package %{nil}

• This is something that is commonly done when obtaining RPMs
off of the Internet. Unless you know for sure that an Internet
binary RPM was built specifically against your version of Red Hat
Linux, it is preferable to download the src.rpm of the
package and rebuild a binary RPM with the application linked
against the exact versions of the libraries provided by your
system, and not other, hopefully compatible libraries, or even
library versions that are not on your system.

5. Test your non-root RPM building environment by rebuilding a binary RPM from
an existing source RPM.

The LTris game is a popular Tetris clone. Verify that your RPM build
environment works by creating a binary LTris RPM from the source RPM:

$ rpmbuild --rebuild /labfiles/ltris-1.0.4-2.src.rpm

Installing /labfiles/ltris-1.0.4-2.src.rpm

Executing(%prep): /bin/sh -e /var/tmp/rpm-tmp.2652

12-42

+ umask 022

+ cd /home/guru/rpmbuild/BUILD

+ LANG=C

+ export LANG

+ cd /home/guru/rpmbuild/BUILD

+ rm -rf ltris-1.0.4

+ /usr/bin/gzip -dc /home/guru/rpmbuild/SOURCES/ltris-

1.0.4.tar.gz

+ tar -xf -

+ STATUS=0

...Output Omitted...

After a few minutes have elapsed, look for the Wrote: line near the end of the
output:

Requires: SDL >= 1.1.4 config(ltris) = 1.0.4-2 libSDL-1.2.so.0 libSDL_mixer-1.2.so.0 libc.so.6

libc.so.6(GLIBC_2.0) libc.so.6(GLIBC_2.1) libc.so.6(GLIBC_2.1.3) libc.so.6(GLIBC_2.3) libm.so.6

libpthread.so.0

Checking for unpackaged file(s): /usr/lib/rpm/check-files

/var/tmp/ltris-root

• This is the line you are looking for.Wrote: /home/guru/rpmbuild/RPMS/i386/ltris-1.0.4-2.i386.rpm

Executing(%clean): /bin/sh -e /var/tmp/rpm-tmp.9014

+ umask 022

+ cd /home/guru/rpmbuild/BUILD

+ cd ltris-1.0.4

+ rm -rf /var/tmp/ltris-root

+ exit 0

6. Install the binary RPM which was created in the previous step. The path to the
binary RPM was displayed on the Wrote: line. Remember, you must switch to
the root user to install binary RPMs to the system.

$ su -

Password:

rpm -Uvh /home/guru/rpmbuild/RPMS/i386/ltris-1.0.4-2.i386.rpm

exit

• Test the LTris program as a non-root user. You must be working
in the GUI environment for this to work.

$ ltris

12-43

Task 2

• Update an existing source RPM with the latest software version

Linux distributions are a collection of software packages that have been tested
and validated together. The Linux distributions are released periodically,
typically on a 6 month interval, while the individual packages are developed
independently and released on separate release schedules.

Most Linux distribution vendors release updated packages only in two
circumstances, to fix security vulnerabilities, and to fix major bugs that impact
many people. In all other cases, Linux distribution vendors normally wait until
the next version of their distribution to upgraded to any other updated versions.
Sometimes there will be a newer version of a package available —with features
that you need— than what came with the Linux distribution version you are
using. However, this update does not meet the requirements to be released as
an official update for the Linux distribution. In such circumstances, you can
create your own RPM update for the application. This is desirable over just
downloading, compiling and installing the package to /usr/local/ in a un-
tracked state.

1. To update an RPM that shipped with your distribution, start by installing an
existing source RPM, such as one provided with your distribution. The
distribution source RPMs for Nmap have been placed in the /labfiles/
directory.

$ rpm -Uvh /labfiles/nmap-3.70-1.src.rpm

warning: /labfiles/nmap-3.70-1.src.rpm: V3 DSA signature: NOKEY, key ID 4f2a6fd2

 1:nmap ### [100%]

Note that this may not be the actual source RPM for for Nmap for your specific
Linux distribution but for the sake of consistency in the lab, will be used as
such.

This places the pristine source and any patches for this package into the
~/rpmbuild/SOURCES/ directory, and the spec file for this package into the
~/rpmbuild/SPECS/ directory.

2. Copy the newer pristine tarball of Nmap source code into your
~/rpmbuild/SOURCES/ directory. The tarball has been placed in
/labfiles/ for you.

12-44

$ cp /labfiles/nmap-3.81.tar.bz2 ~/rpmbuild/SOURCES/

List the contents of the ~rpmbuild/SOURCES/ directory. You should see the
tarball you just copied, plus the files provided by the source RPM you installed
in the previous step.

$ ls -al ~/rpmbuild/SOURCES/

total 2574

drwxrwxr-x 2 guru guru 1024 Apr 28 12:03 .

drwxrwxr-x 7 guru guru 1024 Apr 26 23:45 ..

-rw-rw-r-- 1 guru guru 836 Sep 9 2004 inet_aton.patch

-rw-rw-r-- 1 guru guru 324 Sep 9 2004 makefile.patch

-rw-rw-r-- 1 guru guru 922293 Sep 13 2004 nmap-3.00.tar.bz2

-rw-r--r-- 1 guru guru 871101 Mar 22 11:29 nmap-3.81.tar.bz2

$

3. The next step requires modifying the spec file. This can involve two or more
edits, depending on the differences between the older version and the current
version. The two major changes which are always necessary include updating
the version and release numbers (in one or more locations), and adding a
%changelog entry. Additional changes that may be required are forward-
porting patches to the current version, or removing patches that are no longer
required. Finally, sometimes the newer package changes which files are to be
installed, requiring adjustment of the %files section.

Open the Nmap spec file with your favorite text editor, and display the headers
of the file ~/rpmbuild/SPECS/nmap.spec. The following example uses the
nmap-3.70-1 spec file, with line numbers added for reference; small differences
may exist if you are starting from a different spec file.

1 %{!?withgtk1:%define withgtk1 1}

2

3 Summary: Network exploration tool and security scanner

4 Name: nmap

5 Version: 3.70

6 Release: 1

7 License: GPL

8 Group: Applications/System

9 Source0: http://download.insecure.org/nmap/dist/%{name}-%{version}.tar.bz2

10 #Source1: nmapfe.desktop

12-45

11 Patch0: inet_aton.patch

12 Patch1: makefile.patch

13 URL: http://www.insecure.org/nmap/

14 BuildRoot: %{_tmppath}/%{name}-root

15 Epoch: 2

16 BuildRequires: openssl-devel, gtk+-devel, pcre-devel, libpcap

Change lines 5 to match the version of the newer Nmap, version 3.81.

Verify that on line 6 the release number is set to 1 since this will be the first
RPM release of version 3.81.

(SLES/SL only) Change part of line 16 from gtk+-devel to gtk-devel
since on SLES/SL this package has the needed dependencies.

(SLES/SL only) On lines 30 and 31 make a similar changing references to
gtk+ and gtk+-devel to gtk and gtk-devel.

Move to the line starting with %changelog. Add a new entry by adding the
following two lines —changing the date to today’s date— followed by a blank
line right beneath it, for example:

* Tue Mar 22 2005 Firstname Lastname <your@emailaddr.com> - 2:3.81-1

- ver 3.81

The number at the end of the first line is a common, yet not required
convention, for including the epoch, version, and release info linked to each
changelog entry.

Finally, save and exit the file.

4. The changes that have been made may be enough. The next step is to verify
that all current patches still apply to the newer source code. To find out, change
into the spec file directory, and execute the Prep stage of the build:

$ cd ~rpmbuild/SPECS/

$ rpmbuild -bp nmap.spec

...Output Omitted...

If everything works out, it should finish with no error messages or prompting for
user input .

If there were problems, be sure to read the next two steps for examples
problems and their solutions. If there were no problems, you may skip to step 8
if you wish.

12-46

5. You will know that the initial spec file changes are not enough if you get an error
message. The most likely problem you might encounter is that patches which
were previously applied to the older source code no longer apply against the
newer source code. This problem might be caused by any of three different
reasons:

• Perhaps the old patch has been adopted and applied by the software
maintainer, and as such should be dropped from the spec file.

• Perhaps the patch is no longer needed since the software maintainer addressed
the problem using some other mechanism, and as such should be dropped
from the spec file.

• Perhaps the old patch is still needed, but will not apply to the new source. In
this case, a new patch against the current software should be generated to
replace the old patch in the spec file.

Which of these three situations is the cause of any errors, and what action to
take, requires intelligent analysis of the patches and source code of the
software. For example, the Nmap 3.00-4 spec file includes a patch to Nmap,
nmap-3.00-nowarn.patch. When updating to 3.27 and leaving the patch in
place in the spec file, the following error is produced when trying to prepare the
new RPMs:

$ rpmbuild -bp nmap.spec

[snip]

+ echo 'Patch #2 (nmap-3.00-nowarn.patch):'

Patch #2 (nmap-3.00-nowarn.patch):

+ patch -p1 -b --suffix .nowarn -s

The text leading up to this was:

|--- nmap-3.00/tcpip.c.nowarn 2003-01-09 15:46:53.000000000 +0100

|+++ nmap-3.00/tcpip.c 2003-01-09 15:49:34.000000000 +0100

File to patch:

At this point the build process stops, with the patch command waiting for input.
Press <CTRL-C> to abort.

Examining the directory listing of the ~rpmbuild/BUILD/nmap-3.27/
directory reveals that it is likely that the file tcpip.c in the 3.00 source has
been renamed to tcpip.cc in the 3.27 source. This change prevents the
patch from applying.

12-47

However, more inspection is needed. Examining the patch file itself,
~rpmbuild/SOURCE/nmap-3.00-nowarn.patch, reveals that the patch is
changing the following lines of code:

printf("Data portion:\n");

while(i < tot_len) printf("%2X%c", data[i], (++i%16)? ' ' : '\n');

To:

printf("Data portion:\n");

while(i < tot_len) {

 printf("%2X%c", data[i], ((i+1)%16)? ' ' : '\n');

 i++;

}

in two spots in the tcpip.c file. It is important to note that you DO NOT have
to understand the C code to analyze if the patch has already been applied.
Opening the file ~rpmbuild/BUILD/nmap-3.27/tcpip.cc and searching
for the string Data portion, we find the lines (in two different locations):

printf("Data portion:\n");

while(i < tot_len) {

 printf("%2X%c", data[i], ((i+1) %16)? ' ' : '\n');

 i++;

}

So, it appears as if the official 3.27 Nmap has integrated the patch that was
being applied in the RPM building process to the 3.00 Nmap. So, the proper
course of action is to remove references to this patch in our new spec file.

6. Open the file ~rpmbuild/SPECS/nmap.spec using a text editor and remove
the two lines (prefixed here by their line numbers):

12 Patch2: nmap-3.00-nowarn.patch

36 %patch2 -p 1 -b .nowarn

Save the file and exit the text editor, and re-run the Prep by running the
following command:

$ rpmbuild -bp nmap.spec

12-48

Repeat this process until all patching failures are resolved.

7. Once the spec file successfully patches the software without any errors, run the
following command to compile packages of the Nmap software:

$ rpmbuild -ba nmap.spec

8. Another common problem that can prevent the successful building of the new
RPMs are difference in files installed to the virtual root filesystem. If any files
are installed in the virtual root filesystem, but are not referenced in the %files
section, RPM 4.1 and higher releases will display an error and abort the build
process. You will encounter this problem in subsequent lab sequences,
assuming you are using RPM version 4.1 or newer.

When you encounter those sorts of problems, you will have two possible
solutions:

• If the file is needed, add an entry to the %files section so that the file gets
packaged.

• If the file is not needed, use commands in the Install stanza to delete the
unwanted file from the virtual root filesystem.

On RHEL4/FC3 you will see an example of the 2nd scenario with the following
error message will be displayed:

error: Installed (but unpackaged) file(s) found:

 /usr/share/applications/nmapfe.desktop

RPM build errors:

 Installed (but unpackaged) file(s) found:

 /usr/share/applications/nmapfe.desktop

This refers to a menu desktop file. Open the spec file with a text editor, and
examine the %install section. You will notice the following lines:

remove unused files

rm -f $RPM_BUILD_ROOT/usr/share/gnome/apps/Utilities/nmapfe.desktop

The intent is to delete the menu desktop file, but in this newer version it is
being installed into a different location so this deletion attempt is failing.
Correct the line to point to the new location by editing the line to read:

rm -f $RPM_BUILD_ROOT/usr/share/applications/nmapfe.desktop

12-49

Re-run the following command to compile packages of the Nmap software:

$ rpmbuild -ba nmap.spec

This should complete with out error.

On SLES9/SL92 you will encounter two problems. The first build attempt should
end with the following error:

RPM build errors:

 File not found: /var/tmp/nmap-root/usr/share/nmap

This indicates that a required directory was not found in the virtual root. Under
the /usr/share/nmap/ directory the file nmap.dtd should exist. Do a
search to find where it is is located inside of the virtual root:

$ find /var/tmp/nmap-root -name nmap.dtd

/var/tmp/nmap-root/var/tmp/nmap-root/usr/share/nmap/nmap.dtd

If you examine the path you’ll notice that there is a var/tmp/nmap-root/
inside of /var/tmp/nmap-root/. This is likely a error that occurs during the
installation phase, open the spec file and locate the line make install line:

%makeinstall nmapdatadir=$RPM_BUILD_ROOT%{_datadir}/nmap

Edit the line and remove the extra parameter as the stock %makeinstall
macro should be sufficient. Change the line to read:

%makeinstall

Re-run the following command to compile packages of the Nmap software:

$ rpmbuild -ba nmap.spec

You will see an example of the 2nd scenario with the following error message
will be displayed:

error: Installed (but unpackaged) file(s) found:

 /usr/share/applications/nmapfe.desktop

RPM build errors:

 Installed (but unpackaged) file(s) found:

 /usr/share/applications/nmapfe.desktop

This refers to a menu desktop file. Open the spec file with a text editor, and
examine the %install section. You will notice the following lines:

remove unused files

rm -f $RPM_BUILD_ROOT/usr/share/gnome/apps/Utilities/nmapfe.desktop

12-50

The intent is to delete the menu desktop file, but in this newer version it is
being installed into a different location so this deletion attempt is failing.
Correct the line to point to the new location by editing the line to read:

rm -f $RPM_BUILD_ROOT/usr/share/applications/nmapfe.desktop

Re-run the following command to compile packages of the Nmap software:

$ rpmbuild -ba nmap.spec

This should complete with out error.

9. Install the new updated Nmap RPMs as root:

$ su -

Password:

[RHEL4/FC3]# rpm -Uvh /home/guru/rpmbuild/RPMS/i386/nmap-*

[SLES9/SL92]# rpm -Uvh /home/guru/rpmbuild/RPMS/i586/nmap-*

Preparing... ### [100%]

 1:nmap ### [50%]

 2:nmap-frontend ### [100%]

10. Newer Nmap versions supports version scans that report the version of
services. Try using this feature during a confirmation run to see that your new
Nmap RPM is working properly.

nmap -sV 127.0.0.1

Starting nmap 3.81 (http://www.insecure.org/nmap/) at 2005-03-25 18:39 MST

Interesting ports on localhost (127.0.0.1):

(The 1659 ports scanned but not shown below are in state: closed)

PORT STATE SERVICE VERSION

22/tcp open ssh OpenSSH 3.9p1 (protocol 1.99)

25/tcp open smtp Postfix smtpd

111/tcp open rpcbind 2 (rpc #100000)

631/tcp open ipp CUPS 1.1

Nmap finished: 1 IP address (1 host up) scanned in 5.379 seconds

An older version of NMAP without the version scanning feature would have
returned the error:

12-51

Illegal Argument to -P, use -P0, -PI, -PB, -PM, -PP, -PT, or -PT80 (or whatever number you want for

the TCP probe destination port)

QUITTING!

12-52

Task 3

• Create a spec file from scratch for an unpackaged software application.
• Revise packages to correct packaging errors.
• Create multiple RPMs from a single source RPM.

LBreakout2, http://lgames.sourceforge.net/index.php?project=LBreakout2, is
a popular Breakout-style game for Linux. Unfortunately, it is not provided in
RPM format, though the source code is readily available from the
http://lgames.sourceforge.net/ home page. Being a devotee of all things
Breakout and Breakout-related, you have decided to prepare an RPM of
LBreakout2 for your system.

This lab task requires that following packages are installed so that LBreakout2
can be compiled:

SDL-devel

libpng-devel

The RPM packages have the same name on RHEL/FC and SLES/SL. Verify that
the packages are installed, and if not, install them now.

1. When creating an RPM from scratch, most packagers start with a skeleton
spec file which lists common lines used in most spec files. Through a trial-and-
error process, this template file can be modified and tested until it produces a
good set of RPMs. A template spec file has been provided in your /labfiles
directory; begin by copying this spec file for use with LBreakout2:

$ cp /labfiles/template.spec ~/rpmbuild/SPECS/lbreakout2.spec

2. A copy of the source code for LBreakout2 has been provided for you. Copy this
source code into your SOURCES directory:

$ cp /labfiles/lbreakout2-2.4.1.tar.gz ~/rpmbuild/SOURCES

3. Once the source code for an application is in place and a spec file exists, the
next task is to modify the spec to compile your software. Open your spec file
for editing:

$ cd rpmbuild/SPECS/

12-53

$ vim lbreakout2.spec

4. Complete the Header stanza. At a minimum, you will need Summary, Name,
Version, Release, Epoch, License, Group, Source, URL, and BuildRoot
directives. Try creating these yourself, then compare your solution with the
following possible solution:

Summary: Breakout clone

Name: lbreakout2

Version: 2.4.1

Release: 1

Epoch: 0

License: GPL

Group: Amusements/Games

Source0: http://ftp1.sourceforge.net/lgames/%{name}-%{version}.tar.gz

URL: http://lgames.sourceforge.net/index.php?project=LBreakout2

BuildRoot: %{_tmppath}/%{name}-root

5. The Header stanza also requires a %description directive which provides
users with a fuller description of the purpose of the packaged application.
Create your own %description block, similar to the following:

%description

The polished successor to LBreakout offers you a new challenge in more than 50 levels with loads of

new bonuses (goldshower, joker, explosive balls, bonus magnet ...), maluses (chaos, darkness, weak

balls, malus magnet ...) and special bricks (growing bricks, explosive bricks, regenerative bricks,

indestructible bricks, chaotic bricks).

And if you're through with all the levels you can create complete new level sets with the integrated

easy-to-use level editor!

6. Save your spec file and quit the editor. At this point, you can test your spec file
to be certain that your Header stanza works:

$ rpmbuild -bp lbreakout2.spec

• RPM tells you it is executing the %prep section of the spec file.Executing(%prep): /bin/sh -e /var/tmp/rpm-tmp.39167

+ umask 022

+ cd /home/guru/rpmbuild/BUILD

12-54

+ LANG=C

+ export LANG

+ cd /home/guru/rpmbuild/BUILD

+ rm -rf lbreakout2-2.4.1

+ /usr/bin/gzip -dc /home/guru/rpmbuild/SOURCES/lbreakout2-2.4.1.tar.gz

+ tar -xf -

+ STATUS=0

+ '[' 0 -ne 0 ']'

+ cd lbreakout2-2.4.1

++ /usr/bin/id -u

+ '[' 50016 = 0 ']'

++ /usr/bin/id -u

+ '[' 50016 = 0 ']'

+ /bin/chmod -Rf a+rX,g-w,o-w .

• RPM indicates that the %prep section was processed
successfully.

+ exit 0

$

7. The template spec file you used as a starting place has a commonly used Build
stanza already created. Try compiling your software to see if this default Build
stanza will work:

$ rpmbuild -bc lbreakout2.spec

• First, the %prep stanza is processedExecuting(%prep): /bin/sh -e /var/tmp/rpm-tmp.62876

...Output Omitted...

• After the software is prepared, the %build stanza compiles itExecuting(%build): /bin/sh -e /var/tmp/rpm-tmp.81466

...Output Omitted...

• This line shows the step of actually linking together the compiled
objects to produce the lbreakout2 executable.

gcc -O2 -g -pipe -march=i386 -mcpu=i686 -Wall -

I/usr/include/SDL -D_REENTRANT -o lbreakout2 credit.o

shine.o extras.o balls.o shrapnells.o shots.o event.o pad-

dle.o frame.o misc.o bricks.o difficulty.o player.o game.o

file.o levels.o config.o item.o menu.o manager.o value.o

chart.o editor.o help.o hint.o theme.o client.o

client_recv.o client_data.o client_game.o client_handlers.o

comm.o display.o main.o -lSDL_mixer ../common/libcommon.a

../gui/libGui.a -lpng -lz -lm -L/usr/lib -Wl,-

rpath,/usr/lib -lSDL -lpthread

make[3]: Leaving directory `/home/guru/rpmbuild/BUILD/lbreakout2-2.4.1/client'

12-55

make[2]: Leaving directory `/home/guru/rpmbuild/BUILD/lbreakout2-2.4.1/client'

Making all in docs

make[2]: Entering directory `/home/guru/rpmbuild/BUILD/lbreakout2-2.4.1/docs'

make[2]: Nothing to be done for `all'.

make[2]: Leaving directory `/home/guru/rpmbuild/BUILD/lbreakout2-2.4.1/docs'

make[2]: Entering directory `/home/guru/rpmbuild/BUILD/lbreakout2-2.4.1'

make[2]: Leaving directory `/home/guru/rpmbuild/BUILD/lbreakout2-2.4.1'

make[1]: Leaving directory `/home/guru/rpmbuild/BUILD/lbreakout2-2.4.1'

• This exit 0 indicates that the %build completed successfully.+ exit 0

$

8. So far, it looks like the default Build stanza should work. Next, test out the
commonly used Install stanza which was provided in the template spec file:

On RHEL/FC run the following command and examine the output produced, on
SLES/SL skip to step 18. on page 62 (unless you want to read about the types of
problems that can occur).

$ rpmbuild -bi lbreakout2.spec

• First, the %prepExecuting(%prep): /bin/sh -e /var/tmp/rpm-tmp.89196

...Output Omitted...

• Next, the %buildExecuting(%build): /bin/sh -e /var/tmp/rpm-tmp.89196

...Output Omitted...

• Next, the %installExecuting(%install): /bin/sh -e /var/tmp/rpm-tmp.70963

...Output Omitted...

Making install in client

make[1]: Entering directory `/home/guru/rpmbuild/BUILD/lbreakout2-2.4.1/client'

Making install in gfx

make[2]: Entering directory

`/home/guru/rpmbuild/BUILD/lbreakout2-2.4.1/client/gfx'

Making install in AbsoluteB

make[3]: Entering directory `/home/guru/rpmbuild/BUILD/lbreakout2-2.4.1/client/gfx/AbsoluteB'

make[4]: Entering directory `/home/guru/rpmbuild/BUILD/lbreakout2-2.4.1/client/gfx/AbsoluteB'

make[4]: Nothing to be done for `install-exec-am'.

/bin/sh ../../../mkinstalldirs /usr/share/games/lbreakout2/gfx/AbsoluteB

mkdir /usr/share/games/lbreakout2

mkdir: cannot create directory `/usr/share/games/lbreakout2': Permission denied

mkdir /usr/share/games/lbreakout2/gfx

12-56

mkdir: cannot create directory `/usr/share/games/lbreakout2/gfx': No such file or directory

mkdir /usr/share/games/lbreakout2/gfx/AbsoluteB

mkdir: cannot create directory `/usr/share/games/lbreakout2/gfx/AbsoluteB': No such file or directory

make[4]: *** [install-data-local] Error 1

make[4]: Leaving directory

`/home/guru/rpmbuild/BUILD/lbreakout2-2.4.1/client/gfx/AbsoluteB'

make[3]: *** [install-am] Error 2

make[3]: Leaving directory `/home/guru/rpmbuild/BUILD/lbreakout2-2.4.1/client/gfx/AbsoluteB'

make[2]: *** [install-recursive] Error 1

make[2]: Leaving directory `/home/guru/rpmbuild/BUILD/lbreakout2-2.4.1/client/gfx'

make[1]: *** [install-recursive] Error 1

make[1]: Leaving directory `/home/guru/rpmbuild/BUILD/lbreakout2-2.4.1/client'

make: *** [install-recursive] Error 1

error: Bad exit status from /var/tmp/rpm-tmp.70963 (%install)

• RPM indicates that the %install script did NOT complete
successfully.

RPM build errors:

 Bad exit status from /var/tmp/rpm-tmp.70963 (%install)

$

9. The default %install script will NOT work for this software. So, try to figure
out why. Looking at the spec file, you’ll see that the current %build script
does:

%install

rm -rf %{buildroot}

%makeinstall

The problem here is that %makeinstall is not working. Looking through the
output from the %install, you see that the %makeinstall did:

make prefix=/var/tmp/lbreakout2-root/usr

exec_prefix=/var/tmp/lbreakout2-root/usr

bindir=/var/tmp/lbreakout2-root/usr/bin

sbindir=/var/tmp/lbreakout2-root/usr/sbin syscon-

fdir=/var/tmp/lbreakout2-root/etc data-

dir=/var/tmp/lbreakout2-root/usr/share

includedir=/var/tmp/lbreakout2-root/usr/include lib-

dir=/var/tmp/lbreakout2-root/usr/lib libex-

12-57

ecdir=/var/tmp/lbreakout2-root/usr/libexec

localstatedir=/var/tmp/lbreakout2-root/var sharedstate-

dir=/var/tmp/lbreakout2-root/usr/com

mandir=/var/tmp/lbreakout2-root/usr/share/man info-

dir=/var/tmp/lbreakout2-root/usr/share/info install

That is, it ran the make install command with options intented to get it to
install software to a virtual directory structure under the
/var/tmp/lbreakout2-root/ directory rather than under /. However, as
the error indicates, this failed:

make[4]: Entering directory

`/home/guru/rpmbuild/BUILD/lbreakout2-2.4.1/client/gfx/AbsoluteB'

make[4]: Nothing to be done for `install-exec-am'.

/bin/sh ../../../mkinstalldirs /usr/share/games/lbreakout2/gfx/AbsoluteB

• This should have been /var/tmp/lbreakout2-
root/usr/share/games/lbreakout2.

mkdir /usr/share/games/lbreakout2

mkdir: cannot create directory

`/usr/share/games/lbreakout2': Permission denied

For some reason, the %makeinstall macro is not capable of getting this
software to install into the Buildroot. These sorts of problems are quite
common-place, and correcting them typically requires either a modification of
the spec file, an addition of a patch to modify the Makefiles which specify
how the software gets compiled and installed, or some combination of both
spec modifications and code patches.

10. To get this software packaged, you must figure out why it cannot currently be
installed into the Buildroot. So far, you know that executing the
make install command in the client subdirectory of the source code fails
because it tries to install software to /usr/share/games/lbreakout2/
rather than /var/tmp/lbreakout2-
root/usr/share/games/lbreakout2/. Looking at the
/home/guru/rpmbuild/BUILD/lbreakout2-2.4.1/client/Makefile,
you’ll see that it does:

...

hi_inst_flag = -DHI_DIR=\"/var/lib/games\"

inst_dir = /usr/share/games/lbreakout2

inst_flag = -DSRC_DIR=\"/usr/share/games/lbreakout2\"

...

12-58

The problem here is this middle line, line 81. If this Makefile were written
correctly, that line would instead look something like:

inst_dir = $(datadir)/games/lbreakout2

where it uses a shell variable which can be overridden to specify where the
software gets installed.

11. Fixing this problem can be done in a couple of different ways:

• You could create a patch for the Makefile and apply it during the %prep
section. This is the “correct” solution, but is actually quite difficult, since the
Makefiles for this program, like many other Linux applications, are automatically
generated during the %build process by the autoconf software suite.

• You could add a script as the first line of the %install stanza which edits the
incorrect Makefiles. This is a little bit easier to do, but is a less “correct”
solution.

In many cases, though, a third option will also be available: you might simply be
able to modify the incorrect Makefile variable by passing the correct value to
the %makeinstall macro. If possible, that solution will be the simplest. In this
case, the value of the inst_dir variable is incorrect, so modify the spec file to
correct that variable. In the %install stanza, change the %makeinstall line
to:

• This line is too long to fit on a single 80-column line on the
screen. For readability, it can be typed on two lines, as is done
here, with a back-slash (\) at the end of the first line. This back-
slash indicates to rpm that this line continues on to a
subsequent line.

%makeinstall \

 inst_dir=${RPM_BUILD_ROOT}/usr/share/games/lbreakout2

12. Once you have made this change, save the spec file and then try once again to
compile the software and install it to a virtual root directory:

$ rpmbuild -bi lbreakout2.spec

...Output Omitted...

Making install in gui_theme

make[2]: Entering directory `/home/guru/rpmbuild/BUILD/lbreakout2-2.4.1/client/gui_theme'

make[3]: Entering directory `/home/guru/rpmbuild/BUILD/lbreakout2-2.4.1/client/gui_theme'

make[3]: Nothing to be done for `install-exec-am'.

/bin/sh ../../mkinstalldirs /var/tmp/lbreakout2-root/usr/share/games/lbreakout2/gui_theme

• This solved the problem -- the directory is now being created in
the virtual directory tree.

mkdir /var/tmp/lbreakout2-

root/usr/share/games/lbreakout2/gui_theme

...Output Omitted...

12-59

if ! test -f /var/lib/games/lbreakout2.hscr; then \

 /usr/bin/install -c -m 644 -m 666 empty.hscr /var/lib/games/lbreakout2.hscr; \

fi;

/usr/bin/install: cannot create regular file `/var/lib/games/lbreakout2.hscr': Permission denied

make[3]: *** [install-data-local] Error 1

make[3]: Leaving directory `/home/guru/rpmbuild/BUILD/lbreakout2-2.4.1/client'

make[2]: *** [install-am] Error 2

make[2]: Leaving directory `/home/guru/rpmbuild/BUILD/lbreakout2-2.4.1/client'

make[1]: *** [install-recursive] Error 1

make[1]: Leaving directory `/home/guru/rpmbuild/BUILD/lbreakout2-2.4.1/client'

make: *** [install-recursive] Error 1

error: Bad exit status from /var/tmp/rpm-tmp.72065 (%install)

RPM build errors:

 Bad exit status from /var/tmp/rpm-tmp.72065 (%install)

$

13. You’ve solved the first problem, but this revealed a new problem to solve. Here,
the make install command is doing:

make[3]: Entering directory `/home/guru/rpmbuild/BUILD/lbreakout2-2.4.1/client'

...

if ! test -f /var/lib/games/lbreakout2.hscr; then \

 /usr/bin/install -c -m 644 -m 666 empty.hscr

/var/lib/games/lbreakout2.hscr; \

fi;

/usr/bin/install: cannot create regular file

`/var/lib/games/lbreakout2.hscr': Permission denied

make[3]: *** [install-data-local] Error 1

This is a similar problem to the previous one. If you search through the
/home/guru/rpmbuild/BUILD/lbreakout2-2.4.1/client/Makefile
file for the string /var/lib/games, you’ll see that the Makefile does:

...

doc_dir = /usr/doc

hi_dir = /var/lib/games

hi_inst_flag = -DHI_DIR=\"/var/lib/games\"

12-60

...

The problem here is this middle line, line 79. If this Makefile were written
correctly, that line would instead look something like:

hi_dir = $(localstatedir)/lib/games

where it uses a shell variable which can be overridden to specify where the
software gets installed.

14. As with the previous problem, this problem can be fixed by patching the
Makefiles, modifying the Makefiles within the %install script, or by passing a
variable to the %makeinstall macro. Edit the spec file again, and modify the
%makeinstall macro so that it reads:

%makeinstall \

 inst_dir=${RPM_BUILD_ROOT}/usr/share/games/lbreakout2 \

 hi_dir=${RPM_BUILD_ROOT}/var/lib/games

15. Once you have made this change, save the spec file and then try once again to
compile the software and install it to a virtual root directory:

$ rpmbuild -bi lbreakout2.spec

...Output Omitted...

• This solved the problem -- the directory is now being created in
the virtual directory tree.

if ! test -f /var/tmp/lbreakout2-

root/var/lib/games/lbreakout2.hscr; then \

 /usr/bin/install -c -m 644 -m 666 empty.hscr

/var/tmp/lbreakout2-root/var/lib/games/lbreakout2.hscr; \

fi;

...Output Omitted...

Making install in docs

make[1]: Entering directory `/home/guru/rpmbuild/BUILD/lbreakout2-2.4.1/docs'

make[2]: Entering directory `/home/guru/rpmbuild/BUILD/lbreakout2-2.4.1/docs'

make[2]: Nothing to be done for `install-exec-am'.

/bin/sh ../mkinstalldirs /usr/doc/lbreakout2

mkdir /usr/doc

mkdir: cannot create directory `/usr/doc': Permission denied

mkdir /usr/doc/lbreakout2

mkdir: cannot create directory `/usr/doc/lbreakout2': No such file or directory

make[2]: *** [install-data-local] Error 1

12-61

make[2]: Leaving directory `/home/guru/rpmbuild/BUILD/lbreakout2-2.4.1/docs'

make[1]: *** [install-am] Error 2

make[1]: Leaving directory `/home/guru/rpmbuild/BUILD/lbreakout2-2.4.1/docs'

make: *** [install-recursive] Error 1

error: Bad exit status from /var/tmp/rpm-tmp.33062 (%install)

RPM build errors:

 Bad exit status from /var/tmp/rpm-tmp.33062 (%install)

$

16. You’ve solved the second problem, but now you’ve got a new problem to solve.
Here, the make install command is doing:

make[1]: Entering directory `/home/guru/rpmbuild/BUILD/lbreakout2-2.4.1/docs'

...

/bin/sh ../mkinstalldirs /usr/doc/lbreakout2

mkdir /usr/doc

mkdir: cannot create directory `/usr/doc': Permission denied

...

If you look at the /home/guru/rpmbuild/BUILD/lbreakout2-
2.4.1/docs/Makefile file for the string /usr/doc, you’ll find that it does:

...

audio_flag = -DAUDIO_ENABLED

doc_dir = /usr/doc

hi_dir = /var/lib/games

...

17. As with the other problems, the trouble here is this middle line, line 78. It needs
to be corrected to install to the virtual directory tree. This line also has another
flaw. On RHEL/FC systems, all documentation files should be put in the
directory /usr/share/doc but this line specifies that they will be placed in
the /usr/doc directory.

As with the previous problems, this mistake could be fixed in three different
ways. To solve this problem, edit the lbreakout2 spec file again, and change
the %makeinstall line to the following:

12-62

%makeinstall \

 inst_dir=${RPM_BUILD_ROOT}/usr/share/games/lbreakout2 \

 hi_dir=${RPM_BUILD_ROOT}/var/lib/games \

 doc_dir=${RPM_BUILD_ROOT}/usr/share/doc

18. Once you have made this change, save the spec file and then try once again to
compile the software and install it to a virtual root directory:

$ rpmbuild -bi lbreakout2.spec

...Output Omitted...

• Problem solved!mkdir /var/tmp/lbreakout2-root/usr/share/doc

mkdir /var/tmp/lbreakout2-root/usr/share/doc/lbreakout2

/usr/bin/install -c -m 644 index.html /var/tmp/lbreakout2-root/usr/share/doc/lbreakout2/index.html

make[2]: Leaving directory `/home/guru/rpmbuild/BUILD/lbreakout2-2.4.1/docs'

make[1]: Leaving directory `/home/guru/rpmbuild/BUILD/lbreakout2-2.4.1/docs'

make[1]: Entering directory `/home/guru/rpmbuild/BUILD/lbreakout2-2.4.1'

make[2]: Entering directory `/home/guru/rpmbuild/BUILD/lbreakout2-2.4.1'

make[2]: Nothing to be done for `install-exec-am'.

make[2]: Nothing to be done for `install-data-am'.

make[2]: Leaving directory `/home/guru/rpmbuild/BUILD/lbreakout2-2.4.1'

make[1]: Leaving directory `/home/guru/rpmbuild/BUILD/lbreakout2-2.4.1'

• At this point, the %install has finished, and RPM is now
processing the %files stanza.

+ /usr/lib/rpm/redhat/brp-compress

+ /usr/lib/rpm/redhat/brp-strip /usr/bin/strip

+ /usr/lib/rpm/redhat/brp-strip-static-archive

/usr/bin/strip

+ /usr/lib/rpm/redhat/brp-strip-comment-note /usr/bin/strip /usr/bin/objdump

Processing files: lbreakout2-2.4.1-1

error: File not found by glob: /var/tmp/lbreakout2-root/usr/lib/*.so.*

error: File not found: /var/tmp/lbreakout2-root/usr/share/lbreakout2

error: File not found by glob: /var/tmp/lbreakout2-root/usr/share/man/man8/*

Executing(%doc): /bin/sh -e /var/tmp/rpm-tmp.22825

+ umask 022

+ cd /home/guru/rpmbuild/BUILD

+ cd lbreakout2-2.4.1

+ DOCDIR=/var/tmp/lbreakout2-root/usr/share/doc/lbreakout2-2.4.1

+ export DOCDIR

+ rm -rf /var/tmp/lbreakout2-root/usr/share/doc/lbreakout2-2.4.1

12-63

+ /bin/mkdir -p /var/tmp/lbreakout2-root/usr/share/doc/lbreakout2-2.4.1

+ cp -pr AUTHORS COPYING ChangeLog NEWS README TODO /var/tmp/lbreakout2-

root/usr/share/doc/lbreakout2-2.4.1

+ exit 0

RPM build errors:

 File not found by glob: /var/tmp/lbreakout2-root/usr/lib/*.so.*

 File not found: /var/tmp/lbreakout2-root/usr/share/lbreakout2

 File not found by glob: /var/tmp/lbreakout2-root/usr/share/man/man8/*

$

19. At this point, the %build and %install sections of the spec file are correct.
Now, the RPM compile is failing because the default %files stanza in the
template file is not correct. To solve this problem, first use the ls command to
explore what files and directories are in the Buildroot,
/var/tmp/lbreakout2-root. You should find the following files and
directories:

/var/lib/games/lbreakout2.hscr

/usr/share/games/lbreakout2/{gfx,gui_theme,levels,sounds}

/usr/share/doc/lbreakout2

/usr/share/doc/lbreakout2-2.4.1

/usr/bin/lbreakout2

/usr/bin/lbreakout2server

20. There are two problems here. One is that these files and directories need to be
listed in the %files section of the spec file.

There is another, more subtle problem, however. Looking again at this ls
output, you should notice that there are two documentation directories:

RHEL/FC: /usr/share/doc/lbreakout2

RHEL/FC: /usr/share/doc/lbreakout2-2.4.1

SLES/SL: /usr/doc/lbreakout2

SLES/SL: /usr/share/doc/packages/lbreakout2

There should only be one documentation directory.

12-64

On RHEL/FC it should be the one with the application version,
/usr/share/doc/lbreakout2-2.4.1.

On SLES/SL it should be /usr/share/doc/packages/lbreakout2/.

21. If you look at the contents of the wrongly located documentation
directory you should discover that it's all HTML documentation. To combine
these two directories, you should put the contents of the rouge directory as
subdirectory named html in the proper documentation directory.

On RHEL/FC modify the %install stanza of the spec file to end with the line:

mv ${RPM_BUILD_ROOT}/usr/share/doc/lbreakout2 html

On SLES/SL modify the %install stanza of the spec file to end with the line:

mv ${RPM_BUILD_ROOT}/usr/doc/lbreakout2 html

On RHEL/FC When you finish, your Install stanza should read:

%install

rm -rf %{buildroot}

%makeinstall \

 inst_dir=${RPM_BUILD_ROOT}/usr/share/games/lbreakout2 \

 hi_dir=${RPM_BUILD_ROOT}/var/lib/games \

 doc_dir=${RPM_BUILD_ROOT}/usr/share/doc

mv ${RPM_BUILD_ROOT}/usr/share/doc/lbreakout2 html

%clean

rm -rf %{buildroot}

On SLES/SL When you finish, your Install stanza should read:

%install

rm -rf %{buildroot}

%makeinstall

mv ${RPM_BUILD_ROOT}/usr/doc/lbreakout2 html

%clean

rm -rf %{buildroot}

12-65

22. After modifying the contents of the documentation directory, you need to
adjust the %files section to list the newly included documentation files. Add
the html directory to the %doc macro within the %files stanza, so that it
reads:

%doc AUTHORS COPYING ChangeLog NEWS README TODO html

23. Look at the rest of your %files stanza. It currently reads:

%files

• This statement sets ownership on the packaged files and
directories.

%defattr(-, root, root)

%doc AUTHORS COPYING ChangeLog NEWS README TODO html

• The files in /var/tmp/lbreakout2-root/usr/bin%{_bindir}/*

• The files in /var/tmp/lbreakout2-root/usr/lib/*.so.*%{_libdir}/*.so.*

• The files in /var/tmp/lbreakout2-root/usr/share/lbreakout2%{_datadir}/%{name}

• The files in /var/tmp/lbreakout2-root/usr/share/man/man8%{_mandir}/man8/*

Compare this with the list you obtained in step 19 of the files which you wish to
package. When you compare the two lists, you will find that the %{_bindir}
file-matching macro is needed, but that the %{_libdir} and the %{_mandir}
statements need to be deleted.

24. Correct your %files stanza to define the correct files produced with
LBreakout2 by changing it to the following:

%files

%defattr(-, root, root)

%doc AUTHORS COPYING ChangeLog NEWS README TODO html

%{_bindir}/*

%{_datadir}/%{name}

25. Once you have made this change, save the spec file and then try once again to
compile the software and install it to a virtual root directory:

$ rpmbuild -bi lbreakout2.spec

...Output Omitted...

Processing files: lbreakout2-2.4.1-1

• The %files stanza listed a file which could not be found.error: File not found: /var/tmp/lbreakout2-

root/usr/share/lbreakout2

Executing(%doc): /bin/sh -e /var/tmp/rpm-tmp.546

12-66

+ umask 022

+ cd /home/guru/rpmbuild/BUILD

+ cd lbreakout2-2.4.1

+ DOCDIR=/var/tmp/lbreakout2-root/usr/share/doc/lbreakout2-2.4.1

+ export DOCDIR

+ rm -rf /var/tmp/lbreakout2-root/usr/share/doc/lbreakout2-2.4.1

+ /bin/mkdir -p /var/tmp/lbreakout2-root/usr/share/doc/lbreakout2-2.4.1

+ cp -pr AUTHORS COPYING ChangeLog NEWS README TODO html

/var/tmp/lbreakout2-root/usr/share/doc/lbreakout2-2.4.1

+ exit 0

RPM build errors:

 File not found: /var/tmp/lbreakout2-root/usr/share/lbreakout2

$

26. At this point, the spec file is almost working. This procedure failed because the
%files stanza is still slightly incorrect. The %files stanza is currently trying
to package the directory /usr/share/lbreakout2, which does not exist.
Looking back at the list of files and directories produced in step 19. on page 63,
you’ll see that this should instead be /usr/share/games/lbreakout2. To
fix this problem, edit the spec file and change the line:

%{_datadir}/%{name}

to:

%{_datadir}/games/%{name}

27. Once you have made this change, save the spec file and then try once again to
compile the software and install it to a virtual root directory:

$ rpmbuild -bi lbreakout2.spec

...Output Omitted...

28. If you are using RPM 4.1 or later versions, when you complete the previous
step, you will get output similar to the following:

Checking for unpackaged file(s): /usr/lib/rpm/check-files

/var/tmp/lbreakout2-root

12-67

• This error indicates that a file is installed in the virtual root, but is
not listed in the %files stanza.

error: Installed (but unpackaged) file(s) found:

 /var/lib/games/lbreakout2.hscr

RPM build errors:

 Installed (but unpackaged) file(s) found:

 /var/lib/games/lbreakout2.hscr

• This is the problem mentioned in Step 8 of Task 2. RPM 4.1 and
later releases check for installed but unpackaged files and
produce a warning or error when any are encountered.

This build attempt is getting closer to succeeding. Now, the build is exiting
because a file, /var/lib/games/lbreakout2.hscr, was found in the virtual
root, but was not listed in the %files stanza. Skip the next step, and proceed
to step 30 which explains how to add this missing file to the spec file.

• If you are using RPM 4.1 or newer versions, you DO NOT have to
complete the commands in this step. Be grateful!

29. If you are using RPM 4.0 or older versions, you will not get output similar to that
in the previous step. Instead, your build will actually appear to complete
successfully, producing output similar to the following:

...Output Omitted...

+ exit 0

Finding Provides: (using /usr/lib/rpm/find-provides)...

Finding Requires: (using /usr/lib/rpm/find-requires)...

PreReq: rpmlib(PayloadFilesHavePrefix) <= 4.0-1 rpmlib(Com-

pressedFileNames) <= 3.0.4-1

Requires(rpmlib): rpmlib(PayloadFilesHavePrefix) <= 4.0-1

rpmlib(CompressedFileNames) <= 3.0.4-1

Requires: ld-linux.so.2 libartsc.so.0 libaudiofile.so.0

libc.so.6 libdl.so.2 libesd.so.0 libm.so.6 libpng.so.2

libpthread.so.0 libSDL-1.2.so.0 libX11.so.6 libXext.so.6

libz.so.1 libc.so.6(GLIBC_2.0) libc.so.6(GLIBC_2.1)

libc.so.6(GLIBC_2.1.3) libm.so.6(GLIBC_2.0)

libpthread.so.0(GLIBC_2.0)

• Remember, these commands are only used if you are using RPM
4.0 or earlier releases.

RPM 4.1 and later automatically “validate” installations to make sure that all
files installed into the ${RPM_BUILD_ROOT}, complaining if any files were
installed but not packaged. RPM 4.0 and earlier releases do not do this, so you
must manually validate your installation. To do this, first prepare a list of the
files installed by the completed LBreakout2 install, and store these files into a
text file in your home directory:

$ find /var/tmp/lbreakout2-root | sort > ~/lbreakout2-installed-files

12-68

This list of files will incorrectly prepend the ${RPM_BUILD_ROOT} at the
beginning of every file name. Strip this path off:

$ perl -pi -e 's/^\/var\/tmp\/lbreakout2-root//g' ~/lbreakout2-installed-files

Now, actually build a package:

$ rpmbuild -ba lbreakout2.spec

...Output Omitted...

Wrote: /home/guru/rpmbuild/SRPMS/lbreakout2-2.4.1-1.src.rpm

• This is the location of the built package.Wrote: /home/guru/rpmbuild/RPMS/i386/lbreakout2-2.4.1-

1.i386.rpm

Executing(%clean): /bin/sh -e /var/tmp/rpm-tmp.63876

+ umask 022

+ cd /home/guru/rpmbuild/BUILD

+ cd lbreakout2-2.4.1

+ rm -rf /var/tmp/lbreakout2-root

+ exit 0

Once your package is built, query it for the files it contains, and store those file
names in a text file in your home directory:

$ rpm -qlp ../RPMS/i386/lbreakout2-2.4.1-1.i386.rpm | sort >

~/lbreakout2-packaged-files

Finally, compare the list of packaged files with the list of installed files:

• In this output, a plus sign (+) indicates a file which was
installed but not packaged.

$ diff -Naur ~/lbreakout2-packaged-files ~/lbreakout2-

installed-files

--- /home/guru/lbreakout2-packaged-files Thu May 22 14:43:42 2003

+++ /home/guru/lbreakout2-installed-files Thu May 22 14:44:15 2003

@@ -1,5 +1,10 @@

+

+/usr

+/usr/bin

 /usr/bin/lbreakout2

 /usr/bin/lbreakout2server

+/usr/share

+/usr/share/doc

 /usr/share/doc/lbreakout2-2.4.1

 /usr/share/doc/lbreakout2-2.4.1/AUTHORS

12-69

 /usr/share/doc/lbreakout2-2.4.1/ChangeLog

@@ -42,6 +47,7 @@

 /usr/share/doc/lbreakout2-2.4.1/NEWS

 /usr/share/doc/lbreakout2-2.4.1/README

 /usr/share/doc/lbreakout2-2.4.1/TODO

+/usr/share/games

 /usr/share/games/lbreakout2

 /usr/share/games/lbreakout2/gfx

 /usr/share/games/lbreakout2/gfx/AbsoluteB

@@ -247,3 +253,7 @@

 /usr/share/games/lbreakout2/sounds/wall.wav

 /usr/share/games/lbreakout2/sounds/weak_ball.wav

 /usr/share/games/lbreakout2/sounds/wontgiveup.wav

+/var

+/var/lib

+/var/lib/games

+/var/lib/games/lbreakout2.hscr

Looking over that list, you’ll see that the following files or directories are
installed, but are not included in the package:

/usr

/usr/bin

/usr/share

/usr/share/doc

/usr/share/games

/var

/var/lib

/var/lib/games

/var/lib/games/lbreakout2.hscr

Of those files and directories, most are shared directories which should NOT be
part of the package, but one file, /var/lib/games/lbreakout2.hscr, does
need to be added to the package.

12-70

30. Your spec file currently correctly compiles LBreakout2, but it fails to install one
file which is needed by LBreakout2. To fix this problem, add this file to the
%files list in the spec file by adding the line:

%{_localstatedir}/lib/games/lbreakout2.hscr

When you finish, your Files stanza should now look like:

%files

%defattr(-, root, root)

%doc AUTHORS COPYING ChangeLog NEWS README TODO html

%{_bindir}/*

%{_datadir}/games/%{name}

%{_localstatedir}/lib/games/lbreakout2.hscr

31. Once you have made this change, save the spec file and then try once again to
compile the software and install it to a virtual root directory:

$ rpmbuild -bi lbreakout2.spec

...Output Omitted...

Requires(rpmlib): rpmlib(CompressedFileNames) <= 3.0.4-1

rpmlib(PayloadFilesHavePrefix) <= 4.0-1

Requires: /sbin/ldconfig libSDL-1.2.so.0 libSDL_mixer-1.2.so.0 libc.so.6

libc.so.6(GLIBC_2.0) libc.so.6(GLIBC_2.1) libc.so.6(GLIBC_2.1.3)

libc.so.6(GLIBC_2.3) libm.so.6 libm.so.6(GLIBC_2.0) libpng12.so.0

libpthread.so.0 libpthread.so.0(GLIBC_2.0) libz.so.1

Checking for unpackaged file(s): /usr/lib/rpm/check-files

/var/tmp/lbreakout2-root

$

32. This time, the build worked! To finish packaging your software, edit the spec
file one final time and update the Changelog with contents similar to the
following:

%changelog

* Tue Apr 02 2005 John Doe <student@gurulabs.com> 2.4.1-1

- Initial package

12-71

33. Once you have made this change, save the spec file and then try once again to
compile the software, install it to a virtual root directory, and package it:

$ rpmbuild -ba lbreakout2.spec

• First, the %prepExecuting(%prep): /bin/sh -e /var/tmp/rpm-tmp.1332

...Output Omitted...

• Next, the %buildExecuting(%build): /bin/sh -e /var/tmp/rpm-tmp.1332

...Output Omitted...

• Next, the %installExecuting(%install): /bin/sh -e /var/tmp/rpm-tmp.41692

...Output Omitted...

• Next, the %filesProcessing files: lbreakout2-2.4.1-3

• The %doc macro in %filesExecuting(%doc): /bin/sh -e /var/tmp/rpm-tmp.60710

+ umask 022

+ cd /home/guru/rpmbuild/BUILD

+ cd lbreakout2-2.4.1

+ DOCDIR=/var/tmp/lbreakout2-root/usr/share/doc/lbreakout2-2.4.1

+ export DOCDIR

+ rm -rf /var/tmp/lbreakout2-root/usr/share/doc/lbreakout2-2.4.1

+ /bin/mkdir -p /var/tmp/lbreakout2-root/usr/share/doc/lbreakout2-2.4.1

+ cp -pr AUTHORS COPYING ChangeLog NEWS README TODO html /var/tmp/lbreakout2-

root/usr/share/doc/lbreakout2-2.4.1

+ exit 0

Requires(rpmlib): rpmlib(CompressedFileNames) <= 3.0.4-1 rpmlib(PayloadFilesHavePrefix) <= 4.0-1

Requires: /sbin/ldconfig libSDL-1.2.so.0 libSDL_mixer-1.2.so.0 libc.so.6 libc.so.6(GLIBC_2.0)

libc.so.6(GLIBC_2.1) libc.so.6(GLIBC_2.1.3) libc.so.6(GLIBC_2.3) libm.so.6 libm.so.6(GLIBC_2.0)

libpng12.so.0 libpthread.so.0 libpthread.so.0(GLIBC_2.0) libz.so.1

Checking for unpackaged file(s): /usr/lib/rpm/check-files /var/tmp/lbreakout2-root

• Next, build the SRPMWrote: /home/guru/rpmbuild/SRPMS/lbreakout2-2.4.1-3.src.rpm

• Next, build all RPMsWrote: /home/guru/rpmbuild/RPMS/i386/lbreakout2-2.4.1-

3.i386.rpm

• Finish by executing the %clean macro from the %install sectionExecuting(%clean): /bin/sh -e /var/tmp/rpm-tmp.81877

+ umask 022

+ cd /home/guru/rpmbuild/BUILD

+ cd lbreakout2-2.4.1

+ rm -rf /var/tmp/lbreakout2-root

+ exit 0

$

12-72

34. You've now got the RPM

/home/guru/rpmbuild/RPMS/i386/lbreakout2-2.4.1-1.i386.rpm!
To try it out, install it as root:

RHEL/FC $ su -c "rpm -Uvh ../RPMS/i386/lbreakout2-2.4.1-1.i386.rpm"

SLES/SL $ su -c "rpm -Uvh ../RPMS/i586/lbreakout2-2.4.1-1.i586.rpm"

Password:

Preparing... ########################## [100%]

 1:lbreakout2 ########################## [100%]

$

35. Rn the LBreakout2 program to verify that it works:

• You must be in X for this program to run.$ lbreakout2

36. After playing a game of LBreakout2, verify the RPM:

$ rpmverify -V lbreakout2

• This is the high-scores file. It will appear modified, as it does
here, as long as you’ve beaten one of the previous high scores.

S.5....T /var/lib/games/lbreakout2.hscr

$

Here, you see that the file /var/lib/games/lbreakout2.hscr has been
modified in various ways:

• Its size is modified (S)
• Its MD5 hash is different, meaning its contents are changed (5)
• Its timestamps are changed (T)

37. Good Linux administrators periodically verify the files on their systems to make
sure they are not modified, since most installed files should never change.
However, some files (such as this high scores file) might reasonably be
modified. RPM allows files which might change to be flagged as configuration
files, so that administrators verifying the system won’t panic when they notice
changes to these files.

To accomodate your administrators, you decide to revise your lbreakout2 RPM.
Fix your lbreakout2 spec file to indicate that the high-scores file for LBreakout2
is a configuration file. To do this, edit your spec file and change the line in the
%files stanza for the high-scores file from:

%{_localstatedir}/lib/games/lbreakout2.hscr

12-73

to

• The %config macro in the %files section indicates that the
packaged file is a configuration file, and might reasonably
change on a production system.

%config %{_localstatedir}/lib/games/lbreakout2.hscr

Also, modify the Release field in the Header stanza, changing it to:

Release: 2

Finally, document the change you’ve made to the package by adding an entry
to the %changelog section similar to the following:

* Tue Apr 02 2005 John Doe <student@gurulabs.com> 2.4.1-2

- Mark high-scores file as config file

38. Once you have made these three changes to revise your package, save the
spec file and then try once again to compile the software, install it to a virtual
root directory, and package it:

$ rpmbuild -ba lbreakout2.spec

...Output Omitted...

Wrote: /home/guru/rpmbuild/SRPMS/lbreakout2-2.4.1-2.src.rpm

Wrote: /home/guru/rpmbuild/RPMS/i386/lbreakout2-2.4.1-2.i386.rpm

...Output Omitted...

$

39. Now that you’ve built this revised package, upgrade using the -F option to the
rpm command and test it out:

RHEL/FC $ su -c "rpm -Fvh ../RPMS/i386/lbreakout2-2.4.1-2.i386.rpm"

SLES/SL $ su -c "rpm -Fvh ../RPMS/i586/lbreakout2-2.4.1-2.i586.rpm"

Password:

Preparing... ########################## [100%]

 1:lbreakout2 ########################## [100%]

$ lbreakout2

40. Play a couple more games of LBreakout2, making sure to get on the High
Scores list, then verify the RPM again:

$ rpmverify -V lbreakout2

S.5....T c /var/lib/games/lbreakout2.hscr

$

12-74

The high-scores file is now correctly flagged as a configuration file (c), so your
administrators will not panic when they notice it has changed.

41. At this point, you have created an RPM from scratch for LBreakout2, and have
successfully revised it to fix a minor packaging error. Depending on how
thoroughly you have tested LBreakout2, you might have discovered one other
problem with your package -- due to a packaging mistake, your LBreakout2
game does not actually handle high score logging correctly, though you
probably will not notice this unless you play as multiple different users.

The basic mistake made here is this: when a program runs on Unix or Linux, it
normally runs as the user who executes it, which means it only has write access
to the files which that user can write. For high-score tracking to work correctly
for LBreakout2, its high-score file, /var/lib/games/lbreakout2.hscr,
must be writable by every user who runs the lbreakout2 binary.

To accomplish this, two changes are necessary:

• The /var/lib/games/lbreakout2.hscr file should have permissions of
rw-rw-r-- and be owned by the games user and games group

• The /usr/bin/lbreakout2 file should have permissions of r-xr-sr-x and
owned by the root user and the games group

To make these changes, edit your spec file and modify the %files section to
the following:

%files

%defattr(-, root, root)

%doc AUTHORS COPYING ChangeLog NEWS README TODO html

• List each binary separately, since they need different
permissions.

%{_bindir}/lbreakout2server

• Make /usr/bin/lbreakout2 belong to the games group and SGID.%attr(2555,root,games) %{_bindir}/lbreakout2

%{_datadir}/games/%{name}

• Make the /var/lib/games/lbreakout2.hscr file group-writable and
owned by the games group.

%defattr(0664,games,games)

%config %{_localstatedir}/lib/games/lbreakout2.hscr

Also, modify the Release token in the Header stanza to:

Release: 3

Finally, document your changes in the %changelog with a new entry similar to
the following:

* Tue Apr 02 2005 John Doe <student@gurulabs.com> 2.4.1-3

- Make SGID games and fix ownership and perms of

12-75

 high-scores file so that high scores work

42. Once you have made these three changes to revise your package, save the
spec file and then try once again to compile the software, install it to a virtual
root directory, and package it:

$ rpmbuild -ba lbreakout2.spec

...Output Omitted...

Wrote: /home/guru/rpmbuild/SRPMS/lbreakout2-2.4.1-3.src.rpm

Wrote: /home/guru/rpmbuild/RPMS/i386/lbreakout2-2.4.1-3.i386.rpm

...Output Omitted...

$

43. Now that you’ve built this revised package, uninstall the existing package and
install the new package:

$ su -c "rpm -e lbreakout2"

Password:

$ su -c "rpm -Uvh ../RPMS/i386/lbreakout2-2.4.1-3.i386.rpm"

Password:

Preparing... ########################## [100%]

 1:lbreakout2 ########################## [100%]

$

44. Notice the new permissions on the files installed by your revised package:

$ ls -l /usr/bin/lbreakout2* /var/lib/games/lbreakout2.hscr

-r-xr-sr-x 1 root games 279698 Apr 29 12:58 /usr/bin/lbreakout2

-rwxr-xr-x 1 root root 49665 Apr 29 12:58 /usr/bin/lbreakout2server

-rw-rw-r-- 1 games games 227 Apr 29 12:58 /var/lib/games/lbreakout2.hscr

$

Congratulations! At this point you have a high-quality, usable RPM for the
LBreakout2 application which you can give to your users....

45. There is one additional customization which you can make to your LBreakout2
RPM which might be useful to some of your users. RPM supports “sub

12-76

packages” -- the creation of multiple binary RPMs from a single source RPM
file. Look at the binaries installed by your current lbreakout2 RPM:

$ rpm -ql lbreakout2 | grep bin

/usr/bin/lbreakout2

/usr/bin/lbreakout2server

$

Also, examine the number and size of the graphics and sound files installed by
LBreakout2:

$ rpm -ql lbreakout2 | grep "/usr/share/games" | wc -l

 205

$ du -sh /usr/share/games/lbreakout2

3.4M /usr/share/games/lbreakout2

$

The /usr/bin/lbreakout2 binary is the stand-alone application users run
to play LBreakout2. In addition, however, LBreakout2 also provides the
/usr/bin/lbreakout2server binary. This is a network daemon which can
be run on a server. Once started on a server, clients can run
/usr/bin/lbreakout2 on their systems, connect to this server daemon,
and start a network game of LBreakout2. The directory
/usr/share/games/lbreakout2 contains 205 files consuming about 3.4
megabytes of space for artwork required by the client, but not by the server.

For convenience, you might choose to package LBreakout2 in four files:

• lbreakout2, which provides the client binary
• lbreakout2-server, which provides the server binary
• lbreakout2-graphics, which provides the graphics and sound files needed

by the client and optionally useful on the server
• lbreakout2-doc, which provides the documentation files

Splitting LBreakout2 in this fashion will provide your users more flexibility -- they
can install just the parts of LBreakout2 they need, on just the machines on
which they need them.

46. To split LBreakout2 into sub packages, edit the spec file one final time. Sub
packages are made simply by adding additional %package and
%description stanzas to the Header section, then adding additional %files
stanzas which indicate which files get put in which sub packages. First, add a

12-77

line to the current %description stanza, indicating that the lbreakout2
package supplies the LBreakout2 client, like the following:

• The “main” %description and %package information applies to
the “base” package, in this case lbreakout2

This package supplies only the lbreakout2 client, suitable

for use in single-player games.

47. After that %description stanza, add additional %package and
%description stanzas for the new sub packages:

• Create a new sub package, lbreakout2-server%package server

Summary: lbreakout2 network server

Group: Amusements/Games

%description server

This package supplies the lbreakout2server daemon, useful for creating

multi-player LBreakout2 servers

• Create a new sub package, lbreakout2-graphics%package graphics

Summary: lbreakout2 graphics, sound, and level files

Group: Amusements/Games

%description graphics

This package supplies LBreakout2 graphics, sound, and level files. This package must be installed on

client systems, and can be installed on server systems if desired.

• Create a new sub package, lbreakout2-doc%package doc

Summary: lbreakout2 documentation

Group: Amusements/Games

%description doc

This package supplies documentation of LBreakout2.

48. Next, split the %files section up into individual sections for each sub
package. When you finish, your %files section should look something like:

• Files to put in the lbreakout2 package%files

%attr(2555,root,games) %{_bindir}/lbreakout2

%defattr(0664,games,games)

12-78

%config %{_localstatedir}/lib/games/lbreakout2.hscr

• Files to put in the lbreakout2-server package%files server

%defattr(-, root, root)

%{_bindir}/lbreakout2server

• Files to put in the lbreakout2-graphics package%files graphics

%defattr(-, root, root)

%{_datadir}/games/%{name}

• Files to put in the lbreakout2-doc package%files doc

%defattr(-, root, root)

%doc AUTHORS COPYING ChangeLog NEWS README TODO html

49. Now, add an entry to the Changelog documenting your latest change, similar to
the following:

* Tue Apr 02 2005 John Doe <student@gurulabs.com> 2.4.1-4

- Split into multiple packages for user convenience

50. In the Header stanza, increase the Release field one more time:

Release: 4

• The graphics, art, and music files could just be put in the
lbreakout2 package, but then they could not be installed on the
server easily without also unnecessarily installing the client....

51. One additional change is required in the Header stanza. The
/usr/bin/lbreakout2 binary will not run without the graphics, sound, and
level files installed, so the lbreakout2 package needs to require the lbreakout2-
graphics package. Change the Requires field in the Header to require the
lbreakout2-graphics package:

Requires: /sbin/ldconfig lbreakout2-graphics

52. Once you have made these changes to revise your package, save the spec file
and then try once again to compile the software, install it to a virtual root
directory, and package it:

$ rpmbuild -ba lbreakout2.spec

...Output Omitted...

Wrote: /export/home/rpmtestuser/rpmbuild/SRPMS/lbreakout2-2.4.1-4.src.rpm

12-79

Wrote: /export/home/rpmtestuser/rpmbuild/RPMS/i386/lbreakout2-2.4.1-4.i386.rpm

Wrote: /export/home/rpmtestuser/rpmbuild/RPMS/i386/lbreakout2-server-2.4.1-4.i386.rpm

Wrote: /export/home/rpmtestuser/rpmbuild/RPMS/i386/lbreakout2-graphics-2.4.1-4.i386.rpm

Wrote: /export/home/rpmtestuser/rpmbuild/RPMS/i386/lbreakout2-doc-2.4.1-4.i386.rpm

...Output Omitted...

$

53. Congratulations! You’ve now packaged LBreakout2 from scratch, creating four
sub packages from one source package.

12-80

Task 4

• Create a GPG key pair.
• Sign and verify your LBreakout2 RPMs.

This lab explores the functionality built into the RPM command for signing
packages, ensuring package authenticity and integrity.

1. In a previous lab task, you created an RPM for the LBreakout2 application. RPM
provides a variety of built-in integrity and authenticity signatures which can be
checked on RPM packages. First, check the existing signatures of your
lbreakout2-2.4.1-4 RPM file:

RHEL/FC $ rpmsign -K ~/rpmbuild/RPMS/i386/lbreakout2-2.4.1-4.i386.rpm

SLES/SL $ rpmsign -K ~/rpmbuild/RPMS/i586/lbreakout2-2.4.1-4.i586.rpm

• On RPM 4.1 and later, you should see both SHA-1 digests and
MD5 checksums. On RPM 4.0 and earlier, you should only see
MD5 checksums. Both MD5 and SHA-1 are used to provide
digital signatures of the package.

rpmbuild/RPMS/i386/lbreakout2-2.4.1-4.i386.rpm: sha1 md5 OK

$

Here, you see that the SHA-1 and MD5 signatures of this package are correct.
These are both file integrity checks, assuring you that the contents of the
package have not been modified.

2. RPM also provides the capability to digitally sign packages using GPG or PGP.
GPG / PGP signatures are useful to the users who install your software because
these types of signatures allow both the integrity of the package to be verified
(much like MD5 and SHA-1), and also the authenticity of the package to be
verified -- if you sign your packages with GPG, your users can be guaranteed
that the software they install comes from you, and not from someone creating
Trojan Horses which appear to come from you.

• The output below is from GnuPG 1.2. Older releases of GnuPG,
such as GnuPG 1.0, will produce different output, and will
actually exit immediately after creating initial configuration files

To utilize this GPG functionality, you must first create GPG keys which will be
used to sign your packages. To create keys, first run the gpg command to
create the GPG configuration files in your home directory:

RHEL/FC $ mkdir ~/.gnupg; chmod 700 ~/.gnupg

$ gpg

gpg: /home/guru/.gnupg: directory created

gpg: new configuration file `/home/guru/.gnupg/gpg.conf' created

gpg: keyblock resource `/home/guru/.gnupg/secring.gpg': file open error

gpg: keyring `/home/guru/.gnupg/pubring.gpg' created

12-81

gpg: Go ahead and type your message ...

• Press CTRL-C to exit out of gpg. You will not need to do this on
older versions of gpg.

CTRL-C

gpg: some signal caught ... exiting

$

3. Once the GPG configuration files have been created, generate GPG keys:

$ gpg --gen-key

gpg (GnuPG) 1.2.6; Copyright (C) 2004 Free Software Foundation, Inc.

This program comes with ABSOLUTELY NO WARRANTY.

This is free software, and you are welcome to redistribute it

under certain conditions. See the file COPYING for details.

• Output seen here will vary slightly with GnuPG version. Select
the default on your version of GnuPG.

Please select what kind of key you want:

 (1) DSA and ElGamal (default)

 (2) DSA (sign only)

 (5) RSA (sign only)

• Select 1 here.Your selection? 1

DSA keypair will have 1024 bits.

About to generate a new ELG-E keypair.

 minimum keysize is 768 bits

 default keysize is 1024 bits

 highest suggested keysize is 2048 bits

• 1024 bits is fine here, or 2048 bits if you’re more paranoid.What keysize do you want? (1024) 1024

Requested keysize is 1024 bits

Please specify how long the key should be valid.

 0 = key does not expire

 <n> = key expires in n days

 <n>w = key expires in n weeks

 <n>m = key expires in n months

 <n>y = key expires in n years

• 0 is fine here. In production use, people typically expire keys on a
periodic basis, however.

Key is valid for? (0) 0

Key does not expire at all

• If you haven’t made any mistakes, say y here. If you have made
mistakes, say n and correct them.

Is this correct (y/n)? y

12-82

You need a User-ID to identify your key; the software constructs the user id

from Real Name, Comment and Email Address in this form:

 "Heinrich Heine (Der Dichter) <heinrichh@duesseldorf.de>"

• Enter your first and last name here.Real name: RPM Test

• Enter your email address.Email address: guru@gurulabs.com

• If you want, enter a descriptive comment here.Comment: RPM Package Builder

You selected this USER-ID:

 "RPM Test (RPM Package Builder) <guru@gurulabs.com>"

• If you haven’t made any mistakes, say o here. If you have made
mistakes, correct them.

Change (N)ame, (C)omment, (E)mail or (O)kay/(Q)uit? o

• Enter a password here. This password is all that prevents
someone from stealing your key file and impersonating you, so
guard it carefully.

You need a Passphrase to protect your secret key.

Enter passphrase:password

Repeat passphrase:password

We need to generate a lot of random bytes. It is a good idea

to perform some other action (type on the keyboard, move the

mouse, utilize the disks) during the prime generation; this

gives the random number

generator a better chance to gain enough entropy.

++++++++++.+++++++++++++++++++++++++++++++++++...++++++++++

++++++++++++++++++++..++++++++++++++++++++++++++++++.+++++.

...++++++++++....++++++++++>++++++++++..>+++++.<.+++++.....

.>+++++.....<+++++.>.+++++......<+++++...............+++++

• Entropy (sources of “random” data) are needed by GnuPG. It
uses seemingly random events like keyboard key presses or
mouse movement as sources of entropy. If enough entropy is
not available, it will actually prompt you to generate more
entropy by carrying out activities such as moving the mouse,
typing on the keyboard, or generating hard disk traffic.

We need to generate a lot of random bytes. It is a good idea

to perform some other action (type on the keyboard, move the

mouse, utilize the disks) during the prime generation; this

gives the random number generator a better chance to gain

enough entropy.

+++++++++++++++++++++++++.++++++++++++++++++++.++++++++++++

+++.+++.+++++.+++

+++++++++++++++++>+++++.......+++++^^^

• The output seen here will vary slightly with GnuPG version.gpg: /home/guru/.gnupg/trustdb.gpg: trustdb created

public and secret key created and signed.

key marked as ultimately trusted.

12-83

pub 1024D/87786C00 2003-04-29 RPM Test (RPM Package Builder) <guru@gurulabs.com>

 Key fingerprint = 24ED F0C7 2148 E88C 51B8 1CA2 8D2A FB9A 8778 6C00

sub 1024g/9B24A1DC 2003-04-29

$

4. At this point, you have generated public and private GPG keys. To verify that
they were created correctly, you can view them:

$ gpg --list-keys

/home/guru/.gnupg/pubring.gpg

pub 1024D/87786C00 2003-04-29 RPM Test (RPM Package Builder) <guru@gurulabs.com>

sub 1024g/9B24A1DC 2003-04-29

$

5. Now that you have created a GPG key, you must configure RPM to allow you to
use it. First, configure RPM to use GPG:

$ echo "%_signature gpg" >> ~/.rpmmacros

$ echo "%_gpg_path $HOME/.gnupg" >> ~/.rpmmacros

$

Also, configure RPM to locate the GPG key you just created:

• Make sure you use the same email address here you used in
step 3 when you generated your GPG keys.

$ echo "%_gpg_name guru@gurulabs.com" >> ~/.rpmmacros

$

6. Once RPM is configured to support GPG, use it to sign a package with your
new GPG private key:

RHEL/FC $ rpmsign --addsign ~/rpmbuild/RPMS/i386/lbreakout2-2.4.1-4.i386.rpm

SLES/SL $ rpmsign --addsign ~/rpmbuild/RPMS/i586/lbreakout2-2.4.1-4.i586.rpm

• Enter your GPG password that you created in step 3.Enter pass phrase: password

Pass phrase is good.

rpmbuild/RPMS/i386/lbreakout2-2.4.1-4.i386.rpm:

$

12-84

7. Next, examine the signatures of your freshly signed package. If you are using
RPM 4.0 or older, you will see:

RHEL/FC $ rpmsign -K ~/rpmbuild/RPMS/i386/lbreakout2-2.4.1-4.i386.rpm

SLES/SL $ rpmsign -K ~/rpmbuild/RPMS/i586/lbreakout2-2.4.1-4.i586.rpm

rpmbuild/RPMS/i386/lbreakout2-2.4.1-4.i386.rpm: md5 gpg OK

$

• When you generated your public and private key pair in step 3,
GPG automatically added your public key to your personal public
keyring. When you ran rpmsign -K, rpmsign used this
public key to decrypt the GPG signature within the package file.

This indicates that the package has a correct MD5 signature, is signed using
GPG, and that the GPG signature of the package can be decrypted using a GPG
public key on your GPG keyring. Congratulations! You have signed a package,
and verified that it is correctly signed. You may skip the rest of the steps in this
lab; they are only necessary for users running RPM 4.1 and newer releases.

8. If you are using RPM 4.1 and newer releases, when you examine the signatures
of your package, you will instead see:

RHEL/FC $ rpmsign -K ~/rpmbuild/RPMS/i386/lbreakout2-2.4.1-4.i386.rpm

SLES/SL $ rpmsign -K ~/rpmbuild/RPMS/i586/lbreakout2-2.4.1-4.i586.rpm

rpmbuild/RPMS/i386/lbreakout2-2.4.1-4.i386.rpm: (SHA1) DSA

sha1 md5 (GPG) NOT OK (MISSING KEYS: GPG#87786c00)

$

Although your package is signed with your correct GPG key, it still shows up as
NOT OK with RPM 4.1 and newer releases. This is because RPM 4.1 and newer
releases use their own separate GPG keyring, rather than reading the keyring of
the user running the RPM command. RPM is trying to verify the signature on
your package using the RPM GPG keyring, and RPM does not yet have your
public key installed on its keyring, so it cannot verify the signature.

9. To correct this, you will first need to export your public key in a format RPM can
understand. To see your public key, use the command:

• Fortunately, this output makes more sense to the GPG software
than it does to you!

$ gpg --export --armor

-----BEGIN PGP PUBLIC KEY BLOCK-----

Version: GnuPG v1.2.1 (GNU/Linux)

mQGiBD6u2hQRBAC1wEn+cJvjz8P94ogeE/PCwX4mUBbY4QvKiklrXgr+bpD

d9OmaM+JqbnqyBIq9KfsxVLK651VFB7jBqKwzjBVQER+xsDJW79vKE2mDv0

zNRJuxG2ull8iwwlyub3H9Jky+VXJ4upA3CxhwDRMjZ1PShhJzPSX0paHwC

12-85

x29FQOTKZ6tfgDopoDbq4bUD/1rwocepHES4EOrzz4TVKXAtwASP+Z18OkI

RPmRQ2nkawnRMhIl+taTcbjBJapm1YiKAyqkGwiWtBMTQER9Ox+Uz1p4SmQ

VO0SAGpi+2jjmD79ViRAqdAd+JcgLSI8c9TEZo3D3UFWZI/8yv5PHJMgGQo

nmbFA/0XeJH5aluTFgFnJCP2JMFvMDG2SwiGmwOyDiAWZ7/RTulOt7Y8fMk

OgLlN9wsAZ6JNCmkUP/jiQFYpyMULI1Soca2h+PKYUenEjmwo1LRWUGkdLa

3t8PA92mAhcJynRG+JEEYL5x3NHDVSIzBxz3mTedWj7YQLkkCrRBVGVzdCB

YWdlIChSUE0gUGFja2FnZSBCdWlsZGVyKSA8a2Fib29tQHdpbnN1Y2tzLmd

YWJzLmNvbT6IWQQTEQIAGQUCPq7aFAQLBwMCAxUCAwMWAgECHgECF4AACgk

mod4bABO7QCfWJoP+QFploVay2FPAskbrle4DjgAnAhdbdFJ27Wbolk1xob

IPd/uQENBD6u2hUQBACOgzjL5Wz0Tg/avYSfiswAC5wwKGXTxG9RZPF3cdB

F/k2KsFpoDg/5p9nzSM/h3MjH+1Lr/ZOJgMr/Bz8TunnJg+I+vx00vh0Tw2

tV3B+0jx+ots3A+Opmn77eUGSm+lOv1PQYfQ9kwRsE7+BO9ylgHsrbx9myA

BQP/aJl2yC5H9MTyiK8PvVzr2hrAdykZYGCmJzcmSJ1guiLEgQ7qG0i3Ycm

z+YxIvon42w6EqaoDBp9RHkK2KQpuvNgQfUSMUcr5tIUf3EqDAy37wgdFPx

eh4yem1zigQ12M/Vk5BkQGBs/8Ol+7VfZ1pvgtvZiXtKSoqIRgQYEQIABgU

FQAKCRCNKvuah3hsAGH6AJ9jgyNiBSEf9a5LcetnZqQez/a9dwCfeNEmgUo

/ZxE3l/sTe5Nb+8=

=OnkZ

-----END PGP PUBLIC KEY BLOCK-----

$

10. Now, save your GPG public key to a file:

$ gpg --export --armor > /tmp/gpg-public-key.asc

$

11. Next, import your public key into RPM’s GPG keyring:

$ su -c "rpmsign --import /tmp/gpg-public-key.asc"

Password:

$

12. Once your public key is imported into the RPM GPG keyring, examine the
signed LBreakout2 package signatures again:

$ rpmsign -K ~/rpmbuild/RPMS/i386/lbreakout2-2.4.1-4.i386.rpm

rpmbuild/RPMS/i386/lbreakout2-2.4.1-4.i386.rpm: (sha1) dsa sha1 md5 gpg OK

$

12-86

13. This time, your GPG signature verified correctly because RPM now has your
GPG public key installed correctly. You can also give your GPG public key to
your users, and they can import it into RPM using the same process you did in
step 11. Once they have imported your public key, they can verify the
authenticity and integrity of any RPMs you create for them!

